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Resumen

Para un entero k ≥ 2, consideremos la sucesión k−Fibonacci, la cual comienza con
0, . . . , 0, 1 (k términos) y a partir de ah́ı cada término de la sucesión es la suma de los
k precedentes. Con k = 2 obtenemos los números de Fibonacci, mientras que si k = 3,
la sucesión resultante es la sucesión Tribonacci, y aśı sucesivamente. La sucesión de Pell
{Pn}n≥0 es la sucesión lineal de orden dos definida por Pn = 2Pn−1 + Pn−2 para n ≥ 2,
con condiciones iniciales P0 = 0 y P1 = 1. En esta tesis estamos interesados en encontrar
todos los enteros c que tengan al menos dos representaciones como una diferencia entre
un número k−Fibonacci y un número de Pell. Este problema, que puede verse como una
variación del ya conocido problema de Pillai, generaliza trabajos previos concernientes
a los casos c = 0 y k = 2. También encontramos todas las razones de sumas de dos
números de Fibonacci que son potencias de 2, extendiendo un trabajo anterior en el cual
se caracteriza todas las potencias de 2 que son sumas de dos números de Fibonacci.

Finalmente, estudiamos la variante de la ecuación de Brocard-Ramanujanm!+1 = u2,
donde u es un término de una sucesión de enteros positivos. Bajo algunas condiciones
técnicas sobre la sucesión, demostramos que esta ecuación tiene a lo más un número finito
de soluciones en enteros positivos m y u. Como aplicación, resolvemos la ecuación cuando
u es un número Tripell. Los números Tripell, los cuales representan una generalización
de los números de Pell, están definidos por la recurrencia Tn = 2Tn−1 + Tn−2 + Tn−3
para n ≥ 3, con condiciones iniciales T0 = 0, T1 = 1 y T2 = 2. Para esta última
sucesión, estudiamos su valuación 2-ádica y 3-ádica con el objetivo de determinar to-
dos los números Tripell que son factoriales. Las principales herramientas utilizadas en
esta investigación son cotas inferiores para formas lineales en logaritmos de números
algebraicos y una versión del método de reducción de Baker-Davenport proveniente de
aproximación Diofántica. También utilizamos el método de construcción de identidades
de Zhou, el cual permite construir identidades para sucesiones lineales recurrentes.

Frases y palabras clave: Problema de Pillai, número k−Fibonacci, número de Pell,
formas lineales en logaritmos, método de reducción, valuación p-ádica, método de Zhou.

v





Abstract

Let us consider, for an integer k ≥ 2, the k−Fibonacci sequence which starts with
0, . . . , 0, 1 (a total of k terms) and each term afterwards is the sum of the k preceding
terms. The Fibonacci numbers are obtained for k = 2, while when, for example, k = 3,
the resulting sequence is the Tribonacci sequence, and so on. The Pell sequence {Pn}n≥0
is the second order linear recurrence defined by Pn = 2Pn−1 +Pn−2 for n ≥ 2, with initial
conditions P0 = 0 and P1 = 1. In this thesis, we are interested in finding all integers c
having at least two representations as a difference between a k−Fibonacci number and a
Pell number. This problem, which can be seen as a variation of the well–known Pillai’s
problem, extends previous works concerning the cases c = 0 and k = 2. We also find
all ratios of sums of two Fibonacci numbers equal to powers of 2, extending a previous
work which investigated the powers of 2 which are sums of two Fibonacci numbers.

Finally, we study the variant of the Brocard-Ramanujan equation m!+1 = u2, where
u is a member of a sequence of positive integers. Under some technical conditions on
the sequence, we prove that this equation has at most finitely many solutions in positive
integers m and u. As an application, we completely solve this equation when u is a Tripell
number. The Tripell numbers are a generalization of the Pell numbers defined by the
recurrence relation Tn = 2Tn−1 + Tn−2 + Tn−3 for n ≥ 3, with T0 = 0, T1 = 1 and T2 = 2
as initial conditions. For this last sequence, we study its 2-adic and 3-adic valuation
to determine all Tripell numbers which are factorials. The primary tools used in our
investigation are lower bounds for linear forms in logarithms of algebraic numbers and a
version of the Baker-Davenport reduction method from Diophantine approximation. We
also make use of Zhou’s method of constructing identities for linear recurrence sequences.

Keywords: Pillai’s problem, k−Fibonacci number, Pell number, linear form in loga-
rithms, reduction method, p−adic valuation, Zhou’s method.
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Chapter 1
Introduction

There are a lot of linear recurrence sequences which are used in number theory. For ins-
tance, the Fibonacci sequence {Fn}n≥0 is one of the most famous and curious numerical
sequences in mathematics and has been widely studied in the literature. This sequence
can be generalized in several ways, some of them preserving the initial conditions and
altering the recurrence relation slightly, others preserving the recurrence relation and
altering the initial conditions. In this thesis, we consider, for an integer k ≥ 2, a
generalization of the Fibonacci sequence called the k−generalized Fibonacci sequence
or, for simplicity, the k−Fibonacci sequence F (k) = {F (k)

n }n≥2−k which is defined by the
recurrence relation

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for n ≥ 2,

with initial conditions

F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

Note that this generalization is in fact a family of sequences where each new choice of k
produces a distinct sequence. For example, the usual Fibonacci sequence is obtained for
k = 2, and for k = 3 we have the Tribonacci sequence. The problem of determining all
integer solutions to Diophantine equations with Fibonacci numbers and its generaliza-
tions has gained a considerable amount of interest among the mathematicians and there
is a very broad literature on this subject. For the beauty and rich applications of these
numbers and their relatives one can see Koshy’s book [50].

In this thesis, we also consider the Pell sequence P = {Pn}n≥0 defined by the recu-
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2 Chapter 1. Introduction

rrence

Pn = 2Pn−1 + Pn−2 for all n ≥ 2,

with the initial conditions P0 = 0 and P1 = 1.

There are several papers in the literature dealing with Diophantine equations in-
volving k−Fibonacci and Pell numbers. For example, Alekseyev [1] established that
F (2) ∩ P = {0, 1, 2, 5} and his result was extended to general k by Bravo, Gómez and
Herrera [15], who found all generalized Fibonacci numbers which are Pell numbers. Fur-
ther details about these sequences can be found, for instance, in [17, 20, 21, 50].

One of the generalizations of the Pell sequence is what we have called the Tripell
sequence T = {Tn}n≥0. This sequence starts with T0 = 0, T1 = 1, T2 = 2 and each
following term is given by the recurrence

Tn = 2Tn−1 + Tn−2 + Tn−3.

This thesis is divided into six chapters. This chapter is introductory, as the title suggests,
and Chapter 2 gives the main tools and the preliminary results which will be used in
this work. Chapter 2 consists of three independent sections. In Section 2.1, we give
an overview of linear recurrence sequences and introduce the theory of constructing
identities by Zhou [83] that will be used in this thesis. In Section 2.2 we study some
properties of continued fractions. The aim of this section is to achieve Lemma 2.1 and
Lemma 2.2. This latter lemma, which will be one of the key tools used in this thesis to
reduce upper bounds, is the version given by Bravo, Gómez and Luca [17] and comes from
a slight variation of a result due to Dujella and Petho from [35]. Chapter 2 concludes
with Section 2.3 in which we present a brief survey of linear forms in logarithms of
algebraic numbers. Specifically, we will present a result due to Matveev [59] which gives
us a general lower bound for linear forms.

In Chapter 3 we apply the method of linear forms in logarithms and reduction tech-
niques to solve a variant of the well–known Pillai’s equation in the context of linear
recurrence sequences. Specifically, we find all integers having at least two representa-
tions as a difference between a k-Fibonacci number and a Pell number. In Chapter 4 we
also apply linear forms in logarithms to solve a Diophantine equation involving Fibonacci
numbers and powers of 2.

In Chapter 5 we study the 2-adic and 3-adic valuation of the Tripell sequence and, as
an application, we determine all Tripell numbers which are factorials. Finally, in Chapter
6 we study the variant of the Brocard–Ramanujan Diophantine equation m! + 1 = u2,
where u is a member of a sequence of positive integers.
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This thesis is written in such a way that, after reading Chapter 2, the reader should
be able to understand each one of the following chapters separately. In what follows, we
give an overview of the contents of Chapters 3 to 6.

Let us suppose that a, b and c are fixed nonzero integers and consider the exponential
Diophantine equation

ax − by = c. (1.1)

In 1936 and again in 1945 (see [63]), Pillai formulated his famous conjecture, which
states that for any fixed integer c ≥ 1, the Diophantine equation (1.1) has only finitely
many positive integer solutions (a, b, x, y) with x, y ≥ 2. This conjeture is still open for
all c 6= 1. The case c = 1 is Catalan’s conjecture which was solved by Mihăilescu [60].
For references and more on the history of this problem, we refer the reader to the survey
[80].

Some recent results related to equation (1.1) have been obtained by several authors
in the context of linear recurrence sequences, i.e., by replacing the powers of a and b by
members of linear recurrence sequences. To fix ideas, let {Un}n≥0 and {Vm}m≥0 be two
linear recurrence sequences of integers and consider the Diophantine equation

Un − Vm = c (1.2)

for a fixed integer c and positive integers n and m. Chim, Pink and Ziegler [28] stu-
died equation (1.2) and proved that under some mild restrictions, there exist only finitely
many integers c such that equation (1.2) has at least two distinct solutions (n,m). Then,
the problem of determining all integers c having at least two representations of the form
Un − Vm can be regarded as a variant of Pillai’s problem. This variant was started
by Ddamulira, Luca and Rakotomalala [33] with Fibonacci numbers and powers of 2.
Shortly afterwards, Bravo, Luca and Yazán [23] considered the same Diophantine equa-
tion in Tribonacci numbers instead of Fibonacci numbers. In [43], Hernández, Luca
and Rivera also considered this variant with Fibonacci and Pell sequences. In fact, the
work of Bravo, Gómez and Herrera [15] mentioned before can be seen as a variation of
Pillai’s problem by taking c = 0. Other cases including Tribonacci, Pell, Padovan and
generalized Fibonacci numbers have been also studied (see [23, 27, 32, 39, 42]).

In [11], which is reproduced in Chapter 3, we study the particular case of equation
(1.2) with k-Fibonacci and Pell numbers which continues and extends the works in
[15, 43] concerning the cases c = 0 and k = 2, respectively. To be more precise, we
consider the Diophantine equation

F (k)
n − Pm = c (1.3)
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for a fixed c and positive integers n,m and k with k ≥ 2. In particular, we are interested
in finding all the integers c having at least two representations of the form F

(k)
n −Pm for

some positive integers n,m and k with k ≥ 2. We prove the following.

Theorem (Chapter 3, Theorem 3.1). All the integers c having at least two representa-

tions of the form F
(k)
n − Pm are

c ∈ {0, 1, 2, 3,−4,−5, 11, 12,−14, 19, 27, 31, 56, 79,−153, 758}.

Furthermore, for each c in the above set, all its representations (k, n,m) of the form

F
(k)
n − Pm with n ≥ 2, m ≥ 1 and k ≥ 2 belong to the sets:

• {(2, 2, 1), (2, 3, 2), (2, 5, 3), (4, 7, 5), (4, 3, 2), (4, 2, 1)} for c = 0.

• {(2, 3, 1), (2, 4, 2), (2, 7, 4), (3, 6, 4), (3, 3, 1)} for c = 1.

• {(2, 4, 1), (2, 16, 9), (3, 5, 3), (3, 4, 2), (5, 7, 5), (5, 4, 2)} for c = 2.

• {(2, 5, 2), (2, 6, 3), (4, 5, 3), (4, 4, 1), (4, 6, 4), (5, 5, 3), (5, 4, 1), (6, 5, 3),
(6, 4, 1), (6, 7, 5), (7, 7, 5), (7, 5, 3), (7, 4, 1), (8, 5, 3), (8, 4, 1), (8, 7, 5)} for c = 3.

• {(2, 6, 4), (2, 2, 3), (4, 5, 4), (4, 2, 3), (5, 5, 4), (5, 2, 3), (6, 5, 4), (6, 2, 3),
(7, 5, 4), (7, 2, 3), (8, 5, 4), (8, 2, 3)} for c = −4.

• {(3, 7, 5), (3, 5, 4)} for c = −5 and {(3, 9, 6), (3, 6, 2)} for c = 11.

• {(3, 7, 4), (3, 6, 1)} for c = 12 and {(4, 8, 6), (4, 6, 5)} for c = −14.

• {(2, 11, 6), (2, 8, 2)} for c = 19 and {(4, 8, 5), (4, 7, 2)} for c = 27.

• {(8, 12, 9), (8, 7, 1)} for c = 31 and {(5, 11, 8), (5, 8, 3)} for c = 56.

• {(3, 10, 6), (3, 9, 2)} for c = 79 and {(8, 10, 8), (8, 6, 7)} for c = −153.

• {(3, 15, 10), (3, 13, 7)} for c = 758.

In addition, there are five parametric families (k, n,m, n1,m1, c) of solutions for which

c = F
(k)
n − Pm = F

(k)
n1 − Pm1 with n, n1 ≥ 2 and m,m1 ≥ 1. Namely

(k, 3, 2, 2, 1, 0), (k, 4, 3, 2, 2,−1), for all k ≥ 3;
(k, 5, 4, 2, 3,−4), for all k ≥ 4;
(k, 7, 5, 5, 3, 3), (k, 7, 5, 4, 1, 3), for all k ≥ 6.
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There are many interesting Diophantine equations that arise when one studies arith-
metic properties of Fibonacci numbers. For example, it is known that 1, 2, 8 are the only
powers of 2 that appear in the Fibonacci sequence. One proof of this fact follows from
Carmichael’s theorem on primitive divisors [26], which states that for n greater than 12,
the nth Fibonacci number Fn has at least one prime factor that is not a factor of any
previous Fibonacci number. From the above, it suffices to check the first 12 terms of the
Fibonacci sequence and among these values one finds all the powers of 2. In 2016, Bravo
and Luca [22] extended the previous result by finding all powers of 2 which are sums of
two Fibonacci numbers, i.e., they found all the solutions of the Diophantine equation

Fn + Fm = 2a

in positive integer variables (n,m, a). Inspired by these latest research, and in order to
generalize the previous results a little bit more, we consider the Diophantine equation

Fn + Fm = 2a(Fr + Fs) (1.4)

in non negative integers n,m, a, r and s. In Chapter 4, which is based on the paper [12],
we prove the following theorem.

Theorem (Chapter 4, Theorem 4.1). Equation (1.4) has two parametric families of
non-degenerate solutions (n,m, a, r, s) with n > m ≥ 0 and r > s ≥ 0, namely

(n, n− 3, 1, n− 1, 0) : Fn + Fn−3 = 2Fn−1; n ≥ 3;

(n, n− 6, 1, n− 2, n− 4) : Fn + Fn−6 = 2(Fn−2 + Fn−4), n ≥ 6.

When n = 4, 7, in the first and second families, we must take m = 2 (instead of
m = 1), respectively. In addition, putting N := Fn + Fm, there are exactly 12 values of
N = Fn + Fm yielding 21 more sporadic solutions namely:

4 = F4 + F2 = 22F2;

8 = F6 = 22F3 = 23F2;

16 = F7 + F4 = 22(F4 + F2) = 23F3 = 24F2;

18 = F7 + F5 = 2(F6 + F2);

24 = F8 + F4 = 22(F5 + F2) = 23F4;

36 = F9 + F3 = 22(F6 + F2);

56 = F10 + F2 = 22(F7 + F2) = 23(F5 + F3);

60 = F10 + F5 = 22(F7 + F3);

92 = F11 + F4 = 22(F8 + F3);

144 = F12 = 22(F9 + F3) = 23(F7 + F5) = 24(F6 + F2);

288 = F13 + F10 = 23(F9 + F3) = 24(F7 + F5) = 25(F6 + F2);

1008 = F16 + F8 = 24(F10 + F6).
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In number theory, for a given prime number p, the p-adic valuation, or p-adic order,
of a non-zero integer n, denoted by νp(n), is the exponent of the highest power of p which
divides n. The p-adic order of certain linear recurrence sequences has been studied by
many authors. For example, the p-adic order of the Fibonacci numbers was completely
characterized by Lengyel in [52]. In 2016, Sanna [70] gave simple formulas for the p-adic
order νp(un), in terms of νp(n) and the rank of apparition of p in {un}n≥0, where {un}n≥0
is a nondegenerate Lucas sequence.

However, much less is known about the behavior of the p-adic valuation of linear
recurrence sequences of higher order. A particular case of linear recurrence sequences
of order 3 was studied by Marques and Lengyel in [53]. They characterized the 2-adic
valuation of the Tribonacci sequence F (3). Results on the 2-adic valuation of Tetra-
and Pentanacci numbers can be found in [54]. See also [73, 82] for the behaviour of
the 2-adic valuation of generalized Fibonacci numbers and some applications to certain
Diophantine equations.

In Chapter 5, based on [13], we use the theory of constructing identities given by
Zhou in [83] and several congruence results to partially characterize the 2-adic valuation
of the Tripell sequence and fully characterize the 3-adic valuation ν3(Tn). Our main
results are the following.

Theorem (Chapter 5, Theorem 5.3). The 2-adic valuation of the nth Tripell number is
given by

ν2(Tn) =



0, if n ≡ 1, 3, 4, 5 (mod 7);

2, if n ≡ 9 (mod 14);

1, if n ≡ 2, 7 (mod 14);

ν2(n) + 1, if n ≡ 0 (mod 14);

ν2(n+ 1) + 1, if n ≡ 13 (mod 14).

If n ≡ 6 (mod 14), then ν2(Tn) = ν2(n) + 1 except when n ≡ 1280 (mod 1792) or,
equivalently, when n is of the form

n = 14(t27 + 26 + 24 + 23 + 2 + 1) + 6 = 1792t+ 1280 with t ≥ 0.

Theorem (Chapter 5, Theorem 5.4). The 3-adic valuation of the nth Tripell number is
given by

ν3(Tn) =


0, if n ≡ 1, 2, 3, 4 (mod 6);

ν3(n), if n ≡ 0 (mod 6);

ν3(n+ 1), if n ≡ 5 (mod 6).
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And, as an application, we determine all Tripell numbers which are factorials.

Theorem (Chapter 5, Theorem 5.5). The only solutions of the Diophantine equation

Tn = m! (1.5)

in positive integers n,m are (n,m) ∈ {(1, 1), (2, 2)}.

Results on p-adic valuation of terms of recurrence linear sequences have been also
used by several researchers in number theory to solve variants of the Brocard–Ramanujan
Diophantine equation. The Brocard–Ramanujan problem [24, 25, 67, 68], a famously
unsolved problem (see [40]), deals with finding the integer solutions to the equation

m! + 1 = n2. (1.6)

It is expected that the only solutions are (m,n) = (4, 5), (5, 11), (7, 71). Computations
by Berndt and Galway [8] showed that there are no other solution in the range n < 109.
In 1993, Overholt [62] proved that the weak form of Szpiro’s conjecture implies that
equation (1.6) has only finitely many solutions. The weak form of Szpiro’s conjecture
is a special case of the ABC conjecture and asserts that there exists a constant s such
that if A,B, and C are positive integers satisfying A + B = C with gcd(A,B) = 1,
then C ≤ N(ABC)s, where N(k) is the product of all primes dividing k taken without
repetition.

Some variations of equation (1.6) have been considered by various authors and we
refer the reader to [29, 30, 31, 55] and references therein for additional information
and history. A generalization of the Brocard–Ramanujan problem was investigated by
Berend and Osgood (see [7]), who showed that if P ∈ Z[x] is of degree at least 2, then
the density of the set of positive integers m such that

P (x) = m!

has a solution x, is zero.

Variants of (1.6) involving linear recurrences have also been studied. For example,
Marques [57] investigated the Fibonacci version of the Brocard-Ramanujan Diophantine
equation, namely the equation

FmFm+1 · · ·Fm+k−1 + 1 = F 2
n .

Szalay [75] and Pongsriiam [66] worked on another version of the Brocard–Ramanujan
problem with Fibonacci, Lucas and balancing numbers, extending the result of Marques
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[57]. Taşci and Sevgi [76] studied Pell and Pell-Lucas numbers associated with the
Brocard–Ramanujan equation, while Pink and Szikszai [65] investigated the Brocard–
Ramanujan problem with Lucas and associated Lucas sequences.

In this research, we study the variant of the Brocard–Ramanujan Diophantine equa-
tion

m! + 1 = u2n, (1.7)

where {un}n≥0 is a sequence of positive integers. Under some technical conditions on the
sequence, we prove that equation (1.7) has at most finitely many solutions in positive
integers m and n. In [14], which is reproduced in Chapter 6, we prove the following
result.

Theorem (Chapter 6, Theorem 6.1). Let {un}n≥0 be a sequence of positive integers such
that

n = O(log un).

Let p be a prime and assume that

νp(un + 1) = O(nC1) and νp(un − 1) = O(nC2)

for some constants C1 and C2 with max{C1, C2} < 1. Then, the Diophantine equation
(1.7) has only a finite number of solutions in non-negative integers m and n.

Our method to prove the above theorem shows how to extract an upper bound for
the variables of the Diophantine equation. We conclude Chapter 6 by studying equation
(1.7) when un is a Tripell number. We prove the following result.

Theorem (Chapter 6, Theorem 6.2). The only solution of the Diophantine equation

m! + 1 = T 2
n , (1.8)

in non-negative integers m and n, is (m,n) = (4, 3).

This completes the sketch of my thesis.



Chapter 2
Preliminaries

In this chapter, we give some preliminaries that will be useful for this research. The
first section is devoted to the main properties of linear recurrence sequences used in
this thesis. In the second part we recall some theory of Diophantine approximation and
continued fractions which are required in this investigation. We conclude this chapter
with results about lower bounds for linear forms in logarithms of algebraic numbers.

2.1 Linear recurrence sequences

Linear recurrence sequences have interesting properties and have been a central part
of number theory for many years. Their study is plainly of intrinsic interest. We will
refer to some theorems of the multitude of fundamental results that have been proved in
recent years.

Definition 2.1. A linear recurrence sequence of order k ≥ 1 is a sequence {wn}n≥0
which satisfies a relation of the form

wn = a1wn−1 + a2wn−2 + · · ·+ akwn−k (2.1)

for all n ≥ k, where a1, . . . , ak are constants with ak 6= 0. The values w0, w1, . . . , wk−1
are not all zero and are called the initial conditions of the sequence. We say that {wn}n≥0
is simple if its characteristic polynomial

f(x) = xk − a1xk−1 − a2xk−2 − · · · − ak−1x− ak
= (x− α1)

r1(x− α2)
r2 · · · (x− αh)rh , (2.2)

9
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where r1 + r2 + · · ·+ rh = k, has only simple roots in a splitting field over the base field.
We call α1, α2, . . . , αh the roots of the sequence {wn}n≥0. A recurrence sequence of order
2 is called binary; one of order 3 ternary.

Definition 2.2. Define Ω(f(x)) to be the set of all sequences {wn}n≥0 satisfying the
recurrence (2.1).

One may ask if there exists a closed formula that produces the numbers wn defined
by (2.1). Regarding this, it is well–known that for all n,

wn =
h∑

m=1

N(n,m)αnm, (2.3)

where

N(n,m) = A
(m)
1 + A

(m)
2 n+ · · ·+ A(m)

rm nrm−1 =
rm−1∑
i=0

A
(m)
i+1n

i, (2.4)

and each A
(m)
i is a constant determined by the initial conditions of {wn}n≥0 . Expression

(2.3) is sometimes called the Binet type formula for the sequence {wn}n≥0.

If {wn}n≥0 is simple, then

wn = A1α
n
1 + A2α

n
2 + · · ·+ Akα

n
k for all n ≥ 0.

In particular, for a binary simple sequence with distinct roots α and β, the Binet formula
is given by

wn = Cαn +Dβn for all n ≥ 2,

where w0 = C +D and w1 = Cα +Dβ.

In recent years, many researchers in number theory and combinatorics have focused
their attention on finding identities involving terms of certain linear recurrence sequences.
In [83], Zhou introduces his Theory of Constructing Identities, or TCI, which writers have
found to be remarkably useful to subtract a considerable amount of identities. Basically,
it shows how to use certain kinds of polynomial congruences to prove identities for linear
recurrence sequences. Howard and Saidak in [46] gave a proof of TCI involving the Binet
formula of the involved numbers. The result is as follows.

Theorem 2.1 (TCI). For all i = 0, . . . , and j = 0, . . ., let ni and pj be arbitrary integers
and let di and ej be arbitrary complex numbers. Let f(x) be given by (2.2) and suppose

s∑
i=0

dix
ni ≡

t∑
j=0

ejx
pj (mod f(x)). (2.5)
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Then, for all {wn}n in Ω(f(x)) we have

s∑
i=0

diwni
=

t∑
j=0

ejwpj . (2.6)

Conversely, if (2.6) holds for all {wn}n≥0 in Ω(f(x)), then (2.5) holds.

We next present the proof of Theorem 2.1 given by Howard and Saidak in [46].

Proof. First, assume that (2.5) holds, and let

F (x) =
s∑
i=0

dix
ni −

t∑
j=0

ejx
pj . (2.7)

Then, F (x) ≡ 0 (mod f(x)) and αm is a zero of F (x) of multiplicity at least rm . Thus,

F (αm) = F ′(αm) = · · · = F (rm−1)(αm) = 0.

Now define Fu(x) inductively by F0(x) = F (x), and for u ≥ 1

Fu(x) = xF ′u−1(x) =
s∑
i=0

di(ni)
uxni −

t∑
j=0

ej(pj)
uxpj . (2.8)

Note that F (u)(αm) = 0 for u = 0, 1, . . . , rm − 1, if and only if, Fu(αm) = 0 for u =
0, 1, . . . , rm − 1. Hence, for m = 1, 2, . . . , h

A
(m)
1 F0(αm) = A

(m)
2 F1(αm) = · · · = A(m)

rm Frm−1(αm) = 0, (2.9)

for some constants A
(m)
i for i = 1, . . . , rm. That is, for u = 0, 1, . . . , rm − 1

A
(m)
u+1Fu(αm) =

s∑
i=0

diA
(m)
u+1(ni)

u(αm)ni −
t∑

j=0

ejA
(m)
u+1(pj)

u(αm)pj = 0,

so
s∑
i=0

diA
(m)
u+1(ni)

u(αm)ni =
t∑

j=0

ejA
(m)
u+1(pj)

u(αm)pj . (2.10)

Now let {wn}n≥0 be any sequence in Ω(f(x)) with Binet formula (2.3).
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In (2.10) we sum from u = 0 to u = rm− 1 to obtain

rm−1∑
u=0

s∑
i=0

diA
(m)
u+1(ni)

u(αm)ni =
rm−1∑
u=0

t∑
j=0

ejA
(m)
u+1(pj)

u(αm)pj ,

giving
s∑
i=0

diN(ni,m)(αm)ni =
t∑

j=0

ejN(pj,m)(αm)pj , (2.11)

where N(n,m) is defined by (2.4). Then

h∑
m=1

s∑
i=0

diN(ni,m)(αm)ni =
h∑

m=1

t∑
j=0

ejN(pj,m)(αm)pj ,

and so
s∑
i=0

diwni
=

t∑
j=0

ejwpj .

Conversely, assume that (2.6) holds for all {wn}n≥0 in Ω(f(x)). For m = 1, 2, . . . , h, we
know, by (2.2), that ((αm)n), (n(αm)n), . . . , (nrm−1(αm)n) are all in Ω(f(x)). Thus, for
u = 0, 1, . . . , rm − 1,

Fu(αm) =
s∑
i=0

di(ni)
u(αm)ni −

t∑
j=0

ej(pj)
u(αm)pj = 0, (m = 1, 2, . . . , h).

Hence, by (2.7),

F (αm) = F ′(αm) = . . . = F (rm−1)(αm) = 0.

Consequently, (x − αm)rm is a factor of F (x) for m = 1, 2, . . . , h, which implies that
F (x) ≡ 0 (mod f(x)). Thus

s∑
i=0

dix
ni ≡

t∑
j=0

ejx
pj (mod f(x)).
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2.2 Diophantine approximation and continued frac-

tions

Diophantine approximation is the study of how closely an algebraic number α ∈ R can
be approximated by a rational number p/q. The obvious measure of the accuracy of a
Diophantine approximation of a real number α by a rational number p/q is |α− p/q|.
Since Q is dense in R, this is always possible to an arbitrary accuracy. For such a
comparison, one may want upper bounds or lower bounds of the approximation. Liouville
in 1853 showed that algebraic numbers cannot be too well approximated by rationals
(see [61, Theorem 3.2.1]).

Theorem 2.2 (Liouville). Let α ∈ R an algebraic number of degree d 6= 1. Then,
there is a constant C := C(α) such that for all rational numbers p/q, gcd(p, q) = 1, the
inequality ∣∣∣∣α− p

q

∣∣∣∣ > C

qd

holds.

By using the above result, Louville was the first to explicitly construct transcendental
numbers, as observed in the following corollary.

Corollary 2.1 (Liouville). Let β ∈ R be an irrational number and suppose that for all
C > 0 and all integer d ≥ 1, there exists p/q ∈ Q such that∣∣∣∣β − p

q

∣∣∣∣ ≤ C

qd
.

Then, β is transcendental, i.e., β is not algebraic over Q.

For long, there have been many authors who improved Liouville’s result. For example
Thue, Siegel, Dyson and Roth (see [36, 69, 71, 72, 77, 78]) had successively improved
Liouville’s original exponent d which led finally to the Thue-Siege-Roth’s theorem.

Theorem 2.3. Let α ∈ R be an irrational algebraic number. For every ε > 0, there is a
constant C := C(ε, α) such that ∣∣∣∣α− p

q

∣∣∣∣ > C

q2+ε
,

for all irreducible rationals p/q with q > 0.
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It follows that every irrational algebraic number α has approximation exponent equal
to 2. This means that, for every ε > 0, the inequality∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2+ε
,

can have only finitely many solutions in coprime integers p and q.

Continued fractions also play an important role nowadays in number theory. They
constitute one of the best tools for new discoveries in the theory of numbers and in the
field of Diophantine approximations. For the purposes of this section, we will focus only
on simple continued fractions. They have the form

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

or a0 +
1

a1 +
1

a2 +
1

a3 +
.. .

,

where a0 is an integer and a1, a2, . . . are positive integers. In the first case we have
a finite simple continued fraction and in the second case we have an infinite simple
continued fraction. The above expressions are usually denoted by [a0, a1, . . . , an] or by
[a0, a1, a2, . . .] for a finite or infinite simple continued fraction, respectively.

One can easily see that every finite simple continued fraction is a rational number.
Conversely, using the Euclidean algorithm, every rational number can be represented as
a finite simple continued fraction.

The number Cn := [a0, a1, . . . , an] is called the nth convergent of the continue fraction
[a0, a1, a2, . . .]. Clearly, it is a rational number. It is important to develop a systematic
way of computing these convergents. To do this we write:

C0 = [a0] =
a0
1

=
p0
q0
,

C1 = [a0, a1] = a0 +
1

a1
=
a0a1 + 1

a1
=
p1
q1
,

...

Cn = [a0, a1, . . . , an] = a0 +
1

[a1, a2, . . . , an]
= [a0, [a1, a2, . . . , an]] =

pn
qn
.

It is well–know that the sequences of numerators {pn}n≥0 and denominators {qn}n≥0
satisfy the following recursive formulas:
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p0 = 0,
p1 = a0a1 + 1,

...
pn = anpn−1 + pn−2 for all n ≥ 2,

and 
q0 = 1,
q1 = a1,

...
qn = anqn−1 + qn−2 for all n ≥ 2.

It follows that the nth convergent of [a0, a1, a2, . . .] is given by

Cn =
pn
qn

=
anpn−1 + pn−2
anqn−1 + qn−2

.

Proposition 2.1. The following properties hold.

(a) (pk, qk) = 1;

(b) pkqk−1 − pk−1qk = (−1)k−1 for k ≥ 1;

(c) Ck − Ck−1 = (−1)k−1

qkqk−1
for k ≥ 1;

(d) Ck − Ck−2 = (−1)kak
qkqk−2

for k ≥ 2;

(e) For any positive real number x, we have

[a0, a1, . . . , ak−1, x] =
xpk−1 + pk−2
xqk−1 + qk−2

.

It follows from the above proposition that the sequence C1, C3, C5, . . . it is a decreasing
monotonic sequence, while C0, C2, C4, . . . is an increasing monotone sequence. However,
the even and odd convergents are still arbitrarily close. In addition to this, we have
that C0 < C2 < · · · < C3 < C1 and so both sequences {C2n}n≥0 and {C2n+1}n≥0 are
convergent and converge to the same value. So that

lim
n→∞

Cn

exists. This means that every infinite simple continued fraction converges, so we can
define:
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Definition 2.3. Let a0, a1, a2, . . . be a sequence of integers with ai > 0 for i > 0. Then

[a0, a1, a2, . . .] := lim
n→∞

Cn = lim
n→∞

pn
qn

= lim
n→∞

[a0, a1, . . . , an].

With the definitions we made above one can prove the following result.

Theorem 2.4. If α = [a0, a1, . . .] is an infinite simple continued fraction, then α is an
irrational number.

From the above, we have that every infinite simple continued fraction is an irrational
number. Conversely, every irrational number can be represented as an infinite simple
continued fraction, as we see below.

Theorem 2.5. Let α = α0 be a positive irrational number and define the sequence
{ai}i≥0 recursively as follows:

ai := bαic and αi+1 :=
1

αi − ai
for i = 0, 1, . . .

Then, α = [a0, a1, . . .] is a representation of α as a simple continued fraction.

One can also prove that the convergents of the continued fraction expansion of an
irrational number provide the best rational approximations, in the following sense.

Theorem 2.6. Let x be in irrational number and let Cn = pn/qn be the nth convergent
of an infinite simple continued fraction. If a, b ∈ Z and 1 ≤ b ≤ qn, then

|x− Cn| ≤
∣∣∣x− a

b

∣∣∣ .
This means that, among all rational numbers with denominator no larger than qn,

Cn is the closest number to x.

The following lemma (see Theorem 8.2.4 and top of page 287 in [61]) is also an
important result when studying continued fractions because it tells us that the best
approximations of irrational numbers by rational numbers are given by their convergents.
Let us see.

Lemma 2.1 (Legendre). Let τ = [a0, a1, a2, . . .] be the continued fraction expansion of
a real number τ , and let x, y be integers such that∣∣∣∣τ − x

y

∣∣∣∣ < 1

2y2
· (2.12)
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Then, x/y = pk/qk is a convergent of τ . Furthermore,∣∣∣∣τ − x

y

∣∣∣∣ ≥ 1

(ak+1 + 2)y2
· (2.13)

In the course of future calculations, we will obtain some upper bounds for the variables
involved in certain Diophantine equations. However, these upper bounds are very large
that we need to reduce them to size that can be more easily handled. For this purpose
we can use either the previous result or the next lemma which is a slight variation of
a result due to Dujella and Pethő (see [35, Lemma 5a]). In this thesis we shall use the
version given by Bravo, Gómez and Luca (see [17, Lemma 1]). First we need to introduce
some notation.

For a real number X, we write ||X|| := min{|X − n| : n ∈ Z} for the distance from
X to the nearest integer.

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction
of the irrational number τ such that q > 6M , and let A,B, µ be some real numbers with
A > 0 and B > 1. If ε := ||µq|| −M ||τq|| > 0, then there is no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
·

We finally note that the above lemma cannot be applied when µ is a linear combina-
tion of 1 and τ , since then ε < 0. In this case, we use the criterion of Legendre given by
Lemma 2.1.

2.3 Linear forms in logarithms

In this short section, we briefly describe what nowadays is called the theory of linear
forms in logarithms of algebraic numbers. It will be sufficient for us to give at the end
the general lower bound for linear forms in logarithms due to Matveev [59].

Let α1, . . . , αn be complex numbers. We say that α1, . . . , αn are linearly dependent
over Q if there exist A1, . . . , An ∈ Z not all zero such that

A1α1 + · · ·+ Anαn = 0.
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We say that α1, . . . , αn are linearly independent over Q if they are not linearly dependent
over Q.

At a conference in Paris in 1900, the German mathematician David Hilbert presented
his famous list of unsolved problems in mathematics. Hilbert’s seventh problem concerns
powers of algebraic numbers and in particular with the following question: If α 6= 0, 1 is
algebraic and β is algebraic but no rational, is αβ transcendental or at least no rational?
As specific examples he mentioned 2

√
2 and eπ = i−2i.

The problem was resolved independently by Gelfond and Schneider in 1934 showing
that the answer is affirmative. Their result is the following

Theorem 2.1. If α and β are non-zero algebraic numbers with logα and log β linearly
independent over Q, then logα and log β are linearly independent over the algebraic
numbers.

We remark that the previous theorem implies the following result which establishes
the transcendence of a large class of numbers.

Theorem 2.2. If α and β are algebraic numbers with α 6= 0, 1, and β /∈ Q, then αβ is
transcendental.

To see why Theorem 2.1 implies Theorem 2.2 we put β
′

= αβ = eβ logα and suppose
that β

′
is an algebraic number. Then, logα and log β

′
are linearly dependent over the

algebraic numbers. By Theorem 2.1, logα and log β
′

are also linearly dependent over Q.
Thus, there exist A1, A2 ∈ Z not both zero such that A1 logα + A2 log β

′
= 0, so that

A1 + βA2 = 0. But this is not possible since β /∈ Q.

Gelfond emphasized the importance of getting a generalization of this statement
to more than two logarithms. This problem was solved in 1966 by Baker [2, 3] who
established the following generalization.

Theorem 2.3. If α1, . . . , αn are non-zero algebraic numbers with logα1, . . . , logαn li-
nearly independent over Q, then 1, logα1, . . . , logαn are linearly independent over the
algebraic numbers.

Remark 2.1. Accordingly to Theorem 2.3, any expression of the form

β0 + β1 logα1 + · · ·+ βn logαn,

where α1, . . . , αn, β1, . . . , βn, are non-zero algebraic numbers and β0 is algebraic, vanishes
only in trivial cases.
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Definition 2.4. A linear form in logarithms of algebraic numbers is an expression of
the form

Λ = β1 logα1 + · · ·+ βn logαn,

where the α’s and the β’s denote complex algebraic numbers.

From the discussion above, we can ask about lower bounds for nonzero linear forms
in logarithms. In 1935, Gelfond was the first to publish a lower bound for a linear form
in two logarithms. He proved that if n = 2 and β1 and β2 are rational integers, say
β1 = p1/q1 and β2 = p2/q2, then for every ε > 0,

|Λ| > C(α1, α2, ε) exp(− logB)3+ε,

where B = max{p1, p2, q1, q2}. Almost 30 years later, Baker wrote a sequence of 4 papers
from 1966 to 1968 [2, 3, 4, 5] dealing with any number of logarithms. In particular, Baker
established, among many other things, the following lower bound.

As usual, define the height of an algebraic number as the maximum of the absolute
values of the relatively prime integer coefficients of its minimal defining polynomial.

Theorem 2.4. Let α1, . . . , αn be algebraic numbers from C different from 0, 1 such that
logα1, . . . , logαn and 2πi are linearly independent over Q. Suppose that K > n+ 1 and
let d be any positive integer. Then

|β1 logα1 + · · ·+ βn logαn| > Ce−(logH)K (2.14)

for all algebraic numbers β1, . . . , βn, not all zero, with degrees at most d, where H denotes
the maximum of the heights of β1, . . . , βn, and C > 0 is an effectively computable constant
depending on n, d,K, α1, . . . , αn.

In 1967 Baker obtained (2.14) for any K > 2n + 1 when only logα1, . . . , logαn are
linearly independent over Q. Baker also raised a result for lower limits of inhomogeneous
forms

β0 + β1 logα1 + · · ·+ βn logαn,

and obtained (2.14) for any K > n, assuming that logα1, . . . , logαn or β1, . . . , βn are
linearly independent over Q. The special case when β1, . . . , βn are rational integers was
presented by Baker in the following form.

Theorem 2.5 (Baker, 1975). Let α1, . . . , αn be algebraic numbers from C different from
0, 1, and let β1, . . . , βn be rational integers such that

Λ = β1 logα1 + · · ·+ βn logαn 6= 0.
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Then,
|Λ| > (eB)−C ,

where B denotes the maximum of the heights of β1, . . . , βn and C is an effectively com-
putable constant depending only on n and on α1, . . . , αn.

The previous theorem leads to the following result whose proof can be found in [37].

Corollary 2.2. Let α1, . . . , αn be algebraic numbers from C different from 0, 1, and let
β1, . . . , βn be rational integers such that αβ11 · · ·αβnn 6= 1. Then

|αβ11 · · ·αβnn − 1| > (eB)−C
′

,

where B denotes the maximum of the heights of β1, . . . , βn and C
′

is an effectively com-
putable constant depending only on n and on α1, . . . , αn.

After Baker introduced his results many mathematicians worked to refine them, but
it was not until 2000 that Matveev in [59] found a better lower bound of the Baker–type
for a nonzero linear form in logarithms of algebraic numbers, which we present below.

We start by recalling a definition. Let η be an algebraic number of degree d with
minimal primitive polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then
the logarithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(η) = log max{|p|, q}.

The following are some of the properties [79, Property 3.3] of the logarithmic height
function h(·), which will be used in the remaining of this document without reference.
For η, γ algebraic numbers and s ∈ Z, we have

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ), (2.15)

h(ηs) = |s|h(η).
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With this notation, Matveev (see [59]) proved the following deep theorem which will be
used throughout this thesis.

Theorem 2.6 (Matveev’s theorem). Let γ1, . . . , γt be positive real algebraic numbers in
a real algebraic number field K of degree D, and let b1, . . . , bt be nonzero integers, and
assume that

Λ := γb11 . . . γbtt − 1 6= 0.

Then,
log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 . . . At,

where
B ≥ max{|b1|, . . . , |bt|},

and
Ai ≥ max{Dh(γi), | log γi|, 0.16} for all i = 1, . . . , t.





Chapter 3
Pillai’s problem with k-Fibonacci and Pell
numbers

In this chapter, we find all integers c having at least two representations as a difference
between a k-Fibonacci number and a Pell number. This research continues and extends
the previous work of [15, 42, 43].

3.1 Introduction

In 1936 and again in 1945 (see [63]), Pillai formulated his famous conjecture, which states
that for any fixed integer c ≥ 1, the Diophantine equation

ax − by = c, (3.1)

where a, b are fixed nonzero integers, has only finitely many positive integer solutions
(a, b, x, y) with x, y ≥ 2. This conjeture is still open for all c 6= 1. The case c = 1 is
Catalan’s conjecture which was solved by Mihăilescu [60].

The work started by Pillai was pursued in 1936 by Herschfeld [44, 45] who proved
that equation (3.1) has finitely many solutions in the particular case (a, b) = (2, 3). Pillai
[63, 64] extended Herschfeld’s result to general (a, b) with gcd(a, b) = 1 and a > b ≥ 2.
Specifically, Pillai showed that there exists a positive integer c0(a, b) such that, for |c| >
c0(a, b), equation (3.1) has at most one positive integer solution (x, y). In particular,

23
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he conjectured that if (a, b) = (2, 3) and |c| > 13, then equation (3.1) has at most one
solution. This conjecture was confirmed by Stroeker and Tijdeman [74] and their result
was further improved by Bennett [6], who showed that equation (3.1) has at most two
solutions for fixed a, b and c with a, b > 2.

Some recent results related to equation (3.1) have been obtained by several authors
in the context of linear recurrence sequences, i.e., by replacing the powers of a and b by
members of linear recurrence sequences. To make things clear, let {Un}n≥0 and {Vm}m≥0
be two linear recurrence sequences of integers and consider the Diophantine equation

Un − Vm = c (3.2)

for a fixed integer c and positive integers n and m. Chim, Pink and Ziegler [28] studied
equation (3.2) and proved that under some mild restrictions, there exist only finitely
many integers c such that equation (3.2) has at least two distinct solutions (n,m). Then,
the problem of determining all integers c having at least two representations of the form
Un − Vm can be regarded as a variant of Pillai’s problem. This variant was started by
Ddamulira, Luca and Rakotomalala [33] with Fibonacci numbers and powers of 2. In
[43], Hernández, Luca and Rivera also considered this variant with Fibonacci and Pell
sequences. Other cases including Tribonacci, Pell, Padovan and generalized Fibonacci
numbers have been also studied (see [23, 27, 32, 39, 42]).

We study the particular case of equation (3.2) with k-Fibonacci and Pell numbers.
To be more precise, we consider the Diophantine equation

F (k)
n − Pm = c (3.3)

for a fixed c and positive integers n,m and k with k ≥ 2. In particular, we are interested
in finding all the integers c having at least two representations of the form F

(k)
n −Pm for

some positive integers n,m and k with k ≥ 2. It should be noted that our investigation
extends the previous works in [15, 43] concerning the cases c = 0 and k = 2, respectively.
In addition to this, since the first k + 1 nonzero terms in F (k) are powers of 2, indeed
we have that F

(k)
n = 2max{0,n−2} for 1 ≤ n ≤ k + 1, our work can be also regarded

as an extension of the work in [42] that searched for all integers c having at least two
representations of the form Pn − 2m.

If the k-Fibonacci number involved in (3.3) equals 1, we then assume that its index

is 2 in order to avoid trivial parametric families such as F
(k)
1 − Pm = F

(k)
2 − Pm. Thus,

we assume that n ≥ 2.

Our main result is the following.
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Theorem 3.1. All the integers c having at least two representations of the form F
(k)
n −Pm

are

c ∈ {0, 1, 2, 3,−4,−5, 11, 12,−14, 19, 27, 31, 56, 79,−153, 758}.

Furthermore, for each c in the above set, all its representations (k, n,m) of the form

F
(k)
n − Pm with n ≥ 2, m ≥ 1 and k ≥ 2 belong to the sets:

• {(2, 2, 1), (2, 3, 2), (2, 5, 3), (4, 7, 5), (4, 3, 2), (4, 2, 1)} for c = 0.

• {(2, 3, 1), (2, 4, 2), (2, 7, 4), (3, 6, 4), (3, 3, 1)} for c = 1.

• {(2, 4, 1), (2, 16, 9), (3, 5, 3), (3, 4, 2), (5, 7, 5), (5, 4, 2)} for c = 2.

• {(2, 5, 2), (2, 6, 3), (4, 5, 3), (4, 4, 1), (4, 6, 4), (5, 5, 3), (5, 4, 1), (6, 5, 3),
(6, 4, 1), (6, 7, 5), (7, 7, 5), (7, 5, 3), (7, 4, 1), (8, 5, 3), (8, 4, 1), (8, 7, 5)} for c = 3.

• {(2, 6, 4), (2, 2, 3), (4, 5, 4), (4, 2, 3), (5, 5, 4), (5, 2, 3), (6, 5, 4), (6, 2, 3),
(7, 5, 4), (7, 2, 3), (8, 5, 4), (8, 2, 3)} for c = −4.

• {(3, 7, 5), (3, 5, 4)} for c = −5 and {(3, 9, 6), (3, 6, 2)} for c = 11.

• {(3, 7, 4), (3, 6, 1)} for c = 12 and {(4, 8, 6), (4, 6, 5)} for c = −14.

• {(2, 11, 6), (2, 8, 2)} for c = 19 and {(4, 8, 5), (4, 7, 2)} for c = 27.

• {(8, 12, 9), (8, 7, 1)} for c = 31 and {(5, 11, 8), (5, 8, 3)} for c = 56.

• {(3, 10, 6), (3, 9, 2)} for c = 79 and {(8, 10, 8), (8, 6, 7)} for c = −153.

• {(3, 15, 10), (3, 13, 7)} for c = 758.

In addition, there are five parametric families (k, n,m, n1,m1, c) of solutions for which

c = F
(k)
n − Pm = F

(k)
n1 − Pm1 with n, n1 ≥ 2 and m,m1 ≥ 1. Namely

(k, 3, 2, 2, 1, 0), (k, 4, 3, 2, 2,−1), for all k ≥ 3;
(k, 5, 4, 2, 3,−4), for all k ≥ 4;
(k, 7, 5, 5, 3, 3), (k, 7, 5, 4, 1, 3), for all k ≥ 6.
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3.2 Preliminary inequalities

The following lemma, which was given by Guzmán and Luca in [41], is useful in the
proof of the main theorem.

Lemma 3.1. Let T be a real number and let m ≥ 1 be and integer. If T > (4m2)m and
T > x/(log x)m, then

x < 2mT (log T )m.

3.2.1 The k−Fibonacci sequence

It is known (see for example, [81]) that the characteristic polynomial of the k-Fibonacci
sequence F (k), namely

Ψk(x) = xk − xk−1 − · · · − x− 1 = (x− α1) · · · (x− αk),

is irreducible over Q and has just one real root outside the unit circle α = α1; the
other roots are strictly inside the unit circle. It turns out that the root α, satisfies (see
[81])

2(1− 2−k) < α < 2.

We now consider, for an integer k ≥ 2, the function

fk(z) =
z − 1

2 + (k + 1)(z − 2)
for z ∈ C.

With this notation, one can easily prove (see [17]) that the following inequalities hold

1/2 < fk(α) < 3/4 and |fk(αi)| < 1 for 2 ≤ i ≤ k.

Dresden and Du proved in [34] that

F (k)
n =

k∑
i=1

fk(αi)α
n−1
i holds for all n ≥ 1 and k ≥ 2. (3.4)

The above expression is usually known as the “Binet–like” formula for F (k). It was also
proved in [34] that the inequality

|F (k)
n − fk(α)αn−1| < 1/2 (3.5)
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holds for all n ≥ 2− k, which shows that the contribution of the roots which are inside
the unit circle to the formula (3.4) is very small. Furthermore, Bravo and Luca [20]
showed that

αn−2 ≤ F (k)
n ≤ αn−1 (3.6)

holds for all n ≥ 1 and k ≥ 2.

The following lemma is a simple result, which is a small variation of the right–hand
side of previous inequality (3.6) (see [20, Lemma 2]).

Lemma 3.2. For every positive integer n ≥ 2, we have

F (k)
n ≤ 2n−2.

Moreover, if 2 ≤ n ≤ k + 1, then the equality is fulfilled.

3.2.2 The Pell sequence

An explicit Binet formula for the sequence P = {Pn}n≥0 is well-known and is useful for
our purposes. Namely, we have that

Pm =
γm − δm

2
√

2
holds for all m ≥ 0, (3.7)

where (γ, δ) = (1+
√

2, 1−
√

2) are the roots of the characteristic polynomial x2−2x−1.
In particular, it easily implies that the inequality

γm−2 ≤ Pm ≤ γm−1 holds for all m ≥ 1. (3.8)

Remark 3.1. We note that for linear recurrence sequences having a dominant root1,
which is a Pisot number, one expects an inequality similar to that of (3.6), or (3.8), that
shows the exponential growth of the sequence.

3.3 The proof of Theorem 3.1

Assume that (n,m) 6= (n1,m1) are pairs of positive indices with n, n1 ≥ 2 such that

F (k)
n − F (k)

n1
= Pm − Pm1 . (3.9)

1We say that a linear recurrence sequence has a dominant root if one of the roots of its characteristic
polynomial has strictly largest absolute value.
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Note that n 6= n1, since otherwise (n,m) = (n1,m1). We may assume that n > n1 giving
n ≥ 3. Then both sides of equation (3.9) are positive and therefore m > m1. Thus,
m ≥ 2.

If k = 2, then F (k) is the Fibonacci sequence {Fn}n≥0 and in this case we already
know the solutions of equation (3.9) as mentioned before. It was proved in [43] that all
integers c admitting at least two representations as a difference between a Fibonacci and
a Pell number are

c ∈ {−4, 0, 1, 2, 3, 19}.
All representations, which have been included in the statement of Theorem 3.1, are

−4 = F6 − P4 = F2 − P3;
0 = F2 − P1 = F3 − P2 = F5 − P3;
1 = F3 − P1 = F4 − P2 = F7 − P4;
2 = F4 − P1 = F16 − P9;
3 = F5 − P2 = F6 − P3;
19 = F11 − P6 = F8 − P2.

From now on, we assume that k ≥ 3. Note that if n = 3, then, by (3.9), we have n1 = 2
giving (m,m1) = (2, 1), which is the first parametric family of solutions. Hence, we can
assume that n ≥ 4.

3.3.1 The case 4 ≤ n ≤ k + 1

In this case, by Lemma 3.2 we have that F
(k)
n = 2n−2 and so our problem is reduced to

finding all integers c having at least two representations of the form

2n−2 − Pm = c

in positive integers n and m with n ≥ 4 and m ≥ 3. But this last problem was completely
solved by Hernane, Luca, Rihane and Togbé in [42]. What they proved is that the only
integers c having at least two representations of the form Ps − 2t are

c ∈ {−3, 0, 1, 4}.

In addition to this, they found all the representations of the above integers c as Ps − 2t

with integers s ≥ 1 and t ≥ 0. Namely

−3 = P5 − 25 = P3 − 23 = P1 − 22;

0 = P2 − 21 = P1 − 20;

1 = P3 − 22 = P2 − 20;

4 = P4 − 23 = P3 − 20.
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The above solutions give the parametric families of solutions listed in Theorem 3.1.
We point out that there is a typo in the statement of the previous result given in [42]
corresponding to the representations of c = −3. This has been fixed here.

3.3.2 The case n ≥ k + 2

Here, by using inequalities (3.6), (3.8) and Lemma 3.2, we get

αn−4 ≤ F
(k)
n−2 + . . .+ F

(k)
n−k = F (k)

n − F
(k)
n−1 ≤ F (k)

n − F (k)
n1

= Pm − Pm1 < Pm ≤ γm−1,

2n−2 ≥ F (k)
n ≥ F (k)

n − F (k)
n1

= Pm − Pm1 > γm−3,

as well as
αn−1 > γm−3.

We record these inequalities as follows.

Lemma 3.3. The inequalities

γm−1 > αn−4, 2n−2 > γm−3 and αn−1 > γm−3

hold. In particular, n ≥ m.

To solve equation (3.9), we need an upper bound for n.

Bounding n

Let us suppose first that n ≤ 300. In this case, since n ≥ k + 2, we get k ≤ 298. We
next find the solutions of equation (3.9) in the small range. Indeed, by Lemma 3.3, we
can write

c(n− 4) + 1 < m < c(n− 1) + 3

where c = (logα)/(log γ). Now, for each k ∈ [3, 298] and n ∈ [k+ 2, 300], we created the
sets

Fibk,n = {F (k)
n − F (k)

n1
: n1 ∈ [2, n− 1]}

and

Pk,n = {Pm − Pm1 : m ∈ [bc(n− 4) + 1e, bc(n− 1) + 3e],m1 ∈ [1,m− 1]}.
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With the help of Mathematica, we found the intersections

Fibk,n ∩ Pk,n for all (k, n) ∈ [3, 298]× [k + 2, 300].

This search reveals that all indices (k, n) for which Fibk,n ∩ Pk,n is not empty belong to
the set {

(3, 5), (3, 6), (3, 9), (3, 10), (3, 15), (4, 6),
(4, 7), (4, 8), (5, 7), (5, 11), (8, 10), (8, 12)

}
.

These indices give the sporadic solutions given in the statement of Theorem 3.1. Thus,
we can assume from now on that n > 300. Then, by Lemma 3.3 we get m > 163. In the
rest of this subsection, we shall work with K := Q(α, γ) so that D = [K : Q] ≤ 2k. Put

C1 := 1.4× 306 × 34.5 × (2k)2(1 + log 2k)(1 + log n).

Combining (3.7) and (3.9), we have∣∣∣∣fk(α)αn−1 − γm

2
√

2

∣∣∣∣ =

∣∣∣∣fk(α)αn−1 − (F (k)
n − F (k)

n1
)− δm

2
√

2
− Pm1

∣∣∣∣
≤

∣∣fk(α)αn−1 − F (k)
n

∣∣+
|δ|m

2
√

2
+ F (k)

n1
+ Pm1 .

We now use (3.5), (3.6) and (3.8), together with the fact that |δ| < 1, to obtain∣∣∣∣fk(α)αn−1 − γm

2
√

2

∣∣∣∣ < 1 + αn1−1 + γm1−1.

Dividing both sides by fk(α)αn−1 and using that fk(α) > 1/2, we get∣∣∣fk(α)−1α−(n−1)γm(2
√

2)−1 − 1
∣∣∣ < 2α

αn
+

2

αn−n1
+

2γm1−1

αn−1

<
2α

αn
+

2

αn−n1
+

2γ2

αm−m1

which implies ∣∣∣fk(α)−1α−(n−1)γm(2
√

2)−1 − 1
∣∣∣ < 18

αmin{n−n1,m−m1}
· (3.10)

In order to obtain absolute upper bounds for k and n, we need to apply several times
Matveev’s theorem, and to do this we must ensure that the corresponding linear forms
do not vanish. This task will be done later for all the linear forms treated in this paper.

Let Λ1 := fk(α)−1α−(n−1)γm(2
√

2)−1 − 1. We first apply Matveev’s theorem to the
left–hand side of (3.10) with the parameters t = 3 and

γ1 := 2
√

2fk(α), γ2 := α, γ3 := γ,



On the equation F
(k)
n − Pm = c 31

b1 := −1, b2 := −(n− 1), b3 := m.

Notice that K contains γ1, γ2, γ3. By Lemma 3.3 we have m ≤ n and so we take B := n.
From the properties of the logarithmic height function, we have that

h(γ1) = h(2
√

2fk(α)) ≤ h(2
√

2) + h(fk(α))

≤ 3

2
log 2 + 2 log k ≤ 3 log k

for all k ≥ 3, where we used the estimate h(fk(α)) < 2 log k (see [16, p. 111]). Hence,
we can take A1 := 6k log k. Furthermore, we can take A2 := 2 log 2 and A3 := k log γ.
Applying Matveev’s theorem, we deduce that

log |Λ1| > −C1A1A2A3 > −2.52× 1013k4 log2 k log n

which together with (3.10) implies

min{n− n1,m−m1} < 5.24× 1013k4 log2 k log n. (3.11)

Now, put

T := {n− n1,m−m1} = {t1, t2},

where t1 ≤ t2. We shall prove the following lemma.

Lemma 3.4. If (n, n1,m,m1) is a solution of (3.9) with n > 300, n ≥ k+2 and n > n1,
then

max{n− n1,m−m1} < 4.06× 1026k8 log3 k log2 n.

Proof. We want to apply Matveev’s theorem to the linear forms

Λ{2,1} := 2
√

2fk(α)(1− αn1−n)αn−1γ−m − 1

and

Λ{2,2} :=
1− γm1−m

2
√

2fk(α)
α−(n−1)γm − 1.

In order to deduce upper bounds on ti, we suppose min T = n − n1 and use (3.9) to
obtain ∣∣∣∣fk(α)(αn−1 − αn1−1)− γm

2
√

2

∣∣∣∣ ≤ ∣∣fk(α)(αn−1 − αn1−1)− F (k)
n + F (k)

n1

∣∣
+
|δ|m

2
√

2
+ Pm1 <

3

2
+ γm1−1.
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Dividing through by γm/(2
√

2), we get,∣∣∣2√2fk(α)(1− αn1−n)αn−1γ−m − 1
∣∣∣ <

3
√

2

γm
+

2
√

2γm1−1

γm

<
4
√

2

γm−m1
<

8

αm−m1
· (3.12)

On the other hand, assuming that min T = m−m1 and using (3.9) once again, we have∣∣∣∣fk(α)αn−1 − γm

2
√

2
+
γm1

2
√

2

∣∣∣∣ =

∣∣∣∣fk(α)αn−1 − (F (k)
n − F (k)

n1
)− δm

2
√

2
+
δm1

2
√

2

∣∣∣∣
<

3

2
+ αn1−1.

Thus, ∣∣∣∣(1− γm1−m)

2
√

2fk(α)
α−(n−1)γm − 1

∣∣∣∣ < 3α

αn
+

2

αn−n1
<

8

αn−n1
· (3.13)

Let us see how to deduce the upper bounds on ti. Note that

Λ{2,1} := γb44 γ
b2
2 γ
−b3
3 − 1 and Λ{2,2} := γb55 γ

−b2
2 γb33 − 1

where

γ2 := α, γ3 := γ, γ4 := 2
√

2fk(α)(1− αn1−n), γ5 :=
1− γm1−m

2
√

2fk(α)
,

and

b2 := n− 1, b3 := m, b4 := b5 = 1.

In order to get lower bounds on Λ{2,1} and Λ{2,2}, one can use the properties of the
logarithmic height to get,

h(γi) ≤


3
2

log 2 + 2 log k + (n− n1)
log 2
k

+ log 2, if i = 4;

3
2

log 2 + 2 log k + (m−m1)
log γ
2

+ log 2, if i = 5.

Since (log 2)/k < (log γ)/2, it follows from (3.11) that

h(γi) < 2.32× 1013k4 log n log2 k.

Moreover, we take

A4 = A5 := 4.64× 1013k5 log n log2 k.
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Furthermore, we can take A2 := 2 log 2 and A3 := k log γ as before. Finally, since
max{n− 1,m, 1} ≤ n, we can take B := n. We then get that

log |Λ{i,j}| > −C1A2A3A4 ≥ −1.95× 1026k8 log2 n log3 k

for {i, j} ∈ {{2, 1}, {2, 2}}. Comparing this with (3.12) and (3.13), we get

max{n− n1,m−m1} < 4.06× 1026k8 log3 k log2 n,

which proves the lemma.

One more time; again, we must apply Matveev’s theorem. This time we use equation
(3.9) to obtain∣∣∣∣fk(α)(αn−1 − αn1−1)− γm − γm1

2
√

2

∣∣∣∣ ≤ ∣∣fk(α)(αn−1 − αn1−1)− F (k)
n + F (k)

n1

∣∣
+
|δm − δm1 |

2
√

2
< 2,

leading to ∣∣∣∣ 1− γm1−m

2
√

2fk(α)(1− αn1−n)
α−(n−1)γm − 1

∣∣∣∣ < 2

fk(α)αn−1(1− αn1−n)

<
8

αn(1− αn1−n)
<

24

αn
. (3.14)

We now write

Λ3 :=
1− γm1−m

2
√

2fk(α)(1− αn1−n)
α−(n−1)γm − 1 = γb66 γ

b2
2 γ

b3
3 − 1,

where

γ6 :=
1− γm1−m

2
√

2fk(α)(1− αn1−n)
, b6 := 1

and γ2, γ3, b2, b3 are given as before. From the properties of the logarithmic height func-
tion, we have that

h(γ6) ≤
3

2
log 2 + 2 log k + (m−m1)

log γ

2
+ log 2 + (n− n1)

log 2

k
+ log 2

< 3.19× 1026k8 log3 k log2 n.

So we can take A6 := 6.38 × 1026k9 log3 k log2 n. We also take B := n. It then follows
from Matveev’s theorem applied to (3.14), after some calculations, that

n < 5.57× 1039k12 log4 k log3 n,
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which is equivalent to
n

log3 n
< 5.57× 1039k12 log4 k.

Then, from Lemma 3.1, and after some elementary algebra, we have

n < 4.46× 1046k12 log7 k. (3.15)

The case of large k

Here we shall work with K := Q(γ) which has D = [K : Q] = 2. We take

C2 := 1.4× 306 × 34.5 × 22(1 + log 2)(1 + log n).

From now on, we assume that k > 782. For such k we have

n < 4.46× 1046k12 log7 k < 2k/2.

At this point, we require an important estimate due to Bravo, Gómez and Luca [18].
They proved that if n < 2k/2, then the nth k-Fibonacci number can be written as

F (k)
n = 2n−2(1 + ζ) where |ζ| < 1/2k/2. (3.16)

Then, by using the above estimate (3.16) and (3.9), we get∣∣∣∣2n−2 − γm

2
√

2

∣∣∣∣ =

∣∣∣∣(2n−2 − F (k)
n

)
+

(
F (k)
n −

γm

2
√

2

)∣∣∣∣
<

2n−2

2k/2
+ 1 + αn1−1 + γm1−1.

So, by Lemma 3.3, we obtain∣∣∣(√2)−2n+1γm − 1
∣∣∣ < 1

2k/2
+

4

2n
+

2

2n−n1
+
γm1−1

2n−2

<
1

2k/2
+

4

2n
+

2

2n−n1
+

γ2

2m−m1

<
13

2min{k/2,n−n1,m−m1}
· (3.17)

Let Λ4 be the expression inside the absolute value on the left–hand side of (3.17). We
apply again Matveev’s theorem with the data

γ1 :=
√

2, γ2 := γ, b1 := −2n+ 1, b2 := m.
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We begin by noticing that the two numbers γ1, γ2 are positive real numbers and belong
to the field K. It follows that we can take B := 2n, A1 := log 2 and A2 := log γ. Then,
the left–hand side of (3.17) is bounded below by

log |Λ4| > −1.4× 305 × 24.5 × 22(1 + log 2)(1 + log(2n))(log 2)(log γ)

> −2× 1010 log n.

Comparing this with (3.17), we get

min{k/2, n− n1,m−m1} < 2.9× 1010 log n. (3.18)

Now the argument is split into three cases.

Case 1. min{k/2, n − n1,m −m1} = k/2. Here, by inequalities (3.15) and (3.18),
we obtain

k

2
< 2.9× 1010 log n < 2.9× 1010 log(4.46× 1046 × k12 × log7 k)

< 4× 1012 log k,

which implies k < 1015.

Case 2. min{k/2, n − n1,m −m1} = n − n1. Using (3.9) and (3.16) as well as the
right–hand side of (3.8), we get∣∣∣∣2n−2 − 2n1−2 − γm

2
√

2

∣∣∣∣ ≤ ∣∣2n−2 − 2n1−2 − F (k)
n + F (k)

n1

∣∣+

∣∣∣∣F (k)
n − F (k)

n1
− γm

2
√

2

∣∣∣∣
<

2n−2

2k/2
+

2n1−2

2k/2
+

δm

2
√

2
+ γm1−1

<
2n−1

2k/2
+ 1 + γm1−1.

We now divide through both sides by 2n−2(1− 2n1−n) and use Lemma 3.3 to get∣∣∣∣ γm2
√

2
(2n−2(1− 2n1−n))−1 − 1

∣∣∣∣ <
4

2k/2
+

8

2n
+

2γm1−1

2n−2

<
4

2k/2
+

8

2n
+

2γ2

2m−m1
·

In the above we have also used the fact that 1 − 2n1−n ≥ 1/2 because n − n1 ≥ 1. On
the other hand, since n ≥ k + 2 we obtain 1/2n < 1/2k/2 and so∣∣∣∣γm√2

2−(n−1)(1− 2n1−n)−1 − 1

∣∣∣∣ < 4

2k/2
+

8

2k/2
+

2γ2

2m−m1

<
24

2min{k/2,m−m1}
· (3.19)
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Let Λ5 := γb11 γ
b2
2 γ

b3
3 − 1 where γ1 :=

√
2(1 − 2n1−n), γ2 := 2 and γ3 := γ. Put also

b1 := −1, b2 := −(n − 1) and b3 := m. Notice that K contains γ1, γ2, γ3. Further, we
may take B := n. From the properties of the logarithmic height function and (3.18), we
have that

h(γ1) ≤
1

2
log 2 + (n− n1) log 2 < 2.1× 1010 log n.

So, we take A1 := 4.2 × 1010 log n, A2 := 2 log 2, A3 := log γ. By Matveev’s theorem,
we deduce that

log |Λ5| > −1.1× 1023 log n

and comparing it with (3.19), we obtain

min{k/2,m−m1} < 1.6× 1023 log2 n.

If min{k/2,m−m1} = k/2, then we proceed as in Case 1 obtaining k < 1028. Otherwise,
we have

m−m1 < 1.6× 1023 log2 n.

Case 3. min{k/2, n− n1,m−m1} = m−m1. Here, applying (3.16) and using once
again (3.9) we deduce ∣∣∣∣2n−2 − γm

2
√

2
+
γm1

2
√

2

∣∣∣∣ < 2n−2

2k/2
+ 2n1−1 + 1.

Dividing by 2n−2 and rearranging the resulting inequality, we get∣∣∣2−(n−2)γm(2
√

2)−1(1− γm1−m)− 1
∣∣∣ < 7

2min{k/2,n−n1}
· (3.20)

We now proceed as in the previous case to obtain

min{k/2, n− n1} < 1.8× 1023 log2 n,

and so k ≤ 1028 or n− n1 < 1.8× 1023 log2 n. In any case we obtain that

max{n− n1,m−m1} < 1.8× 1023 log2 n or k < 1028.

Returning to the equation (3.9) and using once again (3.16), one gets∣∣∣∣2n−2 − 2n1−2 − γm

2
√

2
+

γm

2
√

2

∣∣∣∣ < 2n−1

2k/2
+ 1,

and dividing it by 2n−2(1− 2n1−n), we arrive at∣∣∣γm(1− γm1−m)(
√

2)−12−(n−1)(1− 2n1−n)−1 − 1
∣∣∣ < 4

2k/2
+

8

2n

<
12

2k/2
. (3.21)
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Here, we put

Λ6 := γm(1− γm1−m)(
√

2)−12−(n−1)(1− 2n1−n)−1 − 1.

As before we take K := Q(
√

2) and the parameters

γ6 :=
1− γm1−m
√

2(1− 2n1−n)
, γ2 := 2, γ3 := γ,

b1 := 1, b2 := −(n− 1), b3 := m.

From the properties of the logarithmic height and similar computations done before one
can obtain that

h(γ6) = h

(
1− γm1−m
√

2(1− 2n1−n)

)
< 2.1× 1023 log2 n.

Now, a new application of Matveev’s theorem yields

log |Λ6| > 1036 log3 n,

which combined with (3.21) implies

k

2
log 2 < log 12 + 1036 log3 n.

This, together with (3.15), gives us

k < 1047 and hence m ≤ n < 7.76× 10624. (3.22)

Justifying that ΛU 6= 0

We now justify that the linear forms ΛU , where

U ∈ {1, {2, 1}, {2, 2}, 3, 4, 5, 6}

are nonzero. To do this, let L = Q(α1, . . . , αk, γ) and let σ1, . . . , σk be elements of
Gal(L/Q) such that σi(α) = αi. Since k ≥ 3 and γ has degree 2, there exist i 6= j in
{1, . . . , k} such that σi(γ) = σj(γ). We now consider the automorphism σ = σ−1j σi and

observe that σ(γ) = γ, σ(
√

2) =
√

2 and σ(α) 6= α because σj(α) = αj 6= αi. We will
use this fact to show that ΛU is not zero.

For U = 1, the form Λ1 appears in the left–hand side of (3.10). If Λ1 were zero, then

2
√

2fk(α)αn−1 = γm. (3.23)
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Applying σ to the relation (3.23) and taking absolute values, we get

2
√

2 |fk(αs)| |αs|n−1 = γm

where s 6= 1 is such that σ(α) = αs. But the above equality is impossible since its
left–hand side is < 2

√
2 < 3 because |αs| < 1 and |fk(αs)| < 1, whereas its right–hand

side is ≥ γ163 > 1062. Thus, Λ1 6= 0.

For U = {2, 1}, the form is the one appearing in the left–hand side of (3.12). If this
were zero, then we would get

2
√

2fk(α)(αn−1 − αn1−1) = γm.

Conjugating this last equation with the automorphism σ used before, and then taking
absolute values, we arrive at the equality

2
√

2|fk(αs)||αn−1s − αn1−1
s | = γm,

for some s ≥ 2. But this cannot hold because its left–hand side is < 4
√

2 < 6, while its
right–hand side is > 1062 as mentioned before.

For U = {2, 2}, the form appears in the left–hand side of (3.13). If it is zero, then

fk(α)αn−1 =
γm − γm1

2
√

2
,

and the same argument as above then shows that

|fk(αs)||αs|n−1 =
γm − γm1

2
√

2
.

But the last equality is impossible since its left–hand side is < 1, whereas its right–hand
side is ≥ γm−1(γ− 1)/(2

√
2) = γm−1/2 ≥ γ162/2 for all m ≥ 163. When U = 3, the form

appears in the left–hand side of (3.14). Here, repeating the previous argument one can
prove that Λ3 6= 0.

For U ∈ {4, 5}, the forms appear in the left–hand sides of (3.17) and (3.19), respec-
tively. If these forms were zero, then we would have that

γ2m = 22n−1 and γ2m = 2(2n−1 − 2n1−1)2,

respectively. But the above relations are not possible because no positive power of γ is
an integer. Thus, ΛU 6= 0 for U ∈ {4, 5}. Finally, for U = 6, the form appears in the
left–hand side of (3.21). If it were zero, we would get the relation

γm − γm1 =
√

2(2n−1 − 2n1−1). (3.24)
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Conjugating the above relation in Q(
√

2), we obtain

δm − δm1 = −
√

2(2n−1 − 2n1−1). (3.25)

Combining (3.24) and (3.25), we get

√
2γm−1 ≤ γm − γm1 = |δm − δm1| ≤ |δ|m + |δ|m1 < 1,

which is impossible for m > 163. Hence, Λ6 6= 0.

3.3.3 Reducing the bound on k and n

The case of large k

Suppose k > 782. During the course of our calculations we got k < 1047. We note that
the upper bound given for k is too large to find the solutions of equation (3.9) by using a
computer, so we make use of Lemma 2.2 several times to reduce it. First, we work with
inequality (3.17). To do this, we let

z := m log γ − n log 2 +
1

2
log 2.

Then (3.17) can be rewritten as

|ez − 1| < 13

2min{k/2, n−n1,m−m1}
· (3.26)

Note that z 6= 0 since Λ4 6= 0, so we distinguish the following cases. If z > 0, then
ez − 1 > 0 and therefore

0 < z <
13

2min{k/2, n−n1,m−m1}
,

where we used the fact that x < ex − 1 for all x 6= 0. Now, if we assume that z < 0
and min{k/2, n− n1, m−m1} ≥ 5, then the right–hand side of (3.26) is < 1/2 and so
|ez − 1| < 1/2. Then, we get 1− ez < 1/2 implying e−z = e|z| < 2. Since z < 0, we have

0 < |z| < e|z| − 1 = e|z||ez − 1| < 26

2min{k/2, n−n1,m−m1}
.

In any case we get that

|z| < 26

2min{k/2, n−n1,m−m1}
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holds provided min{k/2, n− n1, m−m1} ≥ 5. Hence

|2m log γ − (2n− 1) log 2| < 52

2min{k/2, n−n1,m−m1}
.

Dividing both sides of the above inequality by 2m log 2 we get∣∣∣∣ log γ

log 2
− 2n− 1

2m

∣∣∣∣ < 76

(2m)2min{k/2,n−n1,,m−m1}
.

Suppose that min{k/2, n − n1,m − m1} > 2245. Then the right–hand side above is
smaller than 1/(2(2m)2). Indeed, the inequality

76

(2m)2min{k/2,n−n1,m−m1}
<

1

2(2m)2
,

is equivalent to
152(2m) < 2min{k/2,n−n1,m−m1}

and this last inequality is fulfilled because 2m ≤ 2n < 2(7.76 × 10624) and it has been
assumed that min{k/2, n− n1, ,m−m1} > 2245. Thus, for

min{k/2, n− n1,m−m1} > 2245,

we have ∣∣∣∣ log γ

log 2
− 2n− 1

2m

∣∣∣∣ < 1

2(2m)2
.

By Lemma 2.1 (see (2.12)), (2n− 1)/(2m) = ps/qs for some convergent ps/qs of

log γ

log 2
= [a0, a1, a2, . . .] = [1, 3, 1, 2, 6, 1, 2, 11, 2, . . .].

Since q1222 ≤ 2m < q1223, it follows that s ≤ 1222, and

as+1 ≤ max{aj : 0 ≤ j ≤ 1223} = 2030.

By Lemma 2.1 (see (2.13)), we get that

1

2032(2m)2
<

∣∣∣∣ log γ

log 2
− 2n− 1

2m

∣∣∣∣ < 76

(2m)2min{k/2,n−n1,,m−m1}
,

giving
2min{k/2,n−n1,m−m1} < 308864m < 2.4× 10630.

Thus min{k/2, n− n1,m−m1} < 2095, which is a contradiction. Consequently,

min{k/2, n− n1,m−m1} ≤ 2245. (3.27)
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If min{k/2, n−n1,m−m1} = m−m1, we then go back to inequality (3.20), and defining

Θ :=
1

2
(2m log γ − (2n− 1) log 2 + 2 log(1− γm1−m)),

we obtain

0 < |Θ| < 14

2min{k/2, n−n1}
(3.28)

provided min{k/2, n−n1} ≥ 4. Multiplying both sides of the above inequality by 2/ log 2
and putting t = m−m1, we get

0 < |2mτ − (2n− 1) + µt| <
A

Bmin{k/2, n−n1}
, (3.29)

where

τ :=
log γ

log 2
, A := 41, B = 2 and µt :=

2 log(1− γ−t)
log 2

·

Clearly τ is an irrational number. We put M := 1.552× 10625 which is an upper bound
for 2m according to (3.22). It then follows from Lemma 2.2, applied to inequality (3.29),
that

min{k/2, n− n1} <
log(Aq/ε)

logB
,

where q > 6M is a denominator of a convergent of the continued fraction of τ such
that ε = ||µq|| − M ||τq|| > 0. A computer search with Mathematica revealed that
log(Aq/ε)/ logB ≤ 2860 for all choices t ∈ {1, 2, . . . , 2245} except when t = 1, 4. Thus,

min{k/2, n− n1} < 2860 for all t ∈ {1, 2, . . . , 2245}, t 6= 1, 4. (3.30)

We could not study the cases t = 1, 4 as before because when applying Lemma 2.2 to the
expression (3.29), the corresponding parameter µ appearing in Lemma 2.2 is an integer
linear combination of 1 and τ . For these special cases we have that

Θ := (m− 1) log γ − (n− 1) log 2 or Θ := (m− 2) log γ − (n− 3) log 2,

depending on whether t = 1 or 4, respectively. By (3.28), we get∣∣∣∣ log γ

log 2
− x

y

∣∣∣∣ < 21

y · 2min{k/2,n−n1}
,

where (x, y) = (n − 1,m − 1) if t = 1 or (x, y) = (n − 3,m − 2) if t = 4. By the same
arguments used for proving (3.27) one gets in both cases

min{k/2, n− n1} ≤ 2252. (3.31)
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If min{k/2, n− n1,m−m1} = n− n1, then we work with (3.19) and apply Lemma 2.2
to obtain

min{k/2, m−m1} < 2100.

Based on the previous analysis, we can conclude that

max{n− n1,m−m1} < 2860.

Returning to (3.21) and arguing as in the proof of (3.29) we conclude that the inequality∣∣∣∣2m( log γ

log 2

)
− (2n− 1) +

2 log ((1− γm1−m)/(1− 2n1−n))

log 2

∣∣∣∣ < 70

2k/2
(3.32)

holds for all k ≥ 10. We next apply Lemma 2.2 to inequality (3.32) for all the choices

n− n1,m−m1 ∈ {1, 2, . . . , 2860}

except for the cases (n − n1,m −m1) = (1, 1), (1, 4). Here, we got k < 5740. In these
last cases, from (3.32) we get that∣∣∣∣ log γ

log 2
− n− 2

m− 1

∣∣∣∣ < 35

(m− 1)2k/2
and

∣∣∣∣ log γ

log 2
− n− 4

m− 2

∣∣∣∣ < 35

(m− 2)2k/2
,

depending on whether (n− n1,m−m1) = (1, 1) or (1, 4), respectively. In both cases we
apply Legendre’s result obtaining k < 4504. In conclusion, we get that k < 5750 always
holds. This leads to a substantial reduction of the upper bound on n, namely

m ≤ n < 2.1× 1098.

With this new upper bounds for k and n, we repeat all the process to finally get k ≤ 782,
which is a contradiction.

The case of small k

Suppose now that k ∈ [3, 782]. In order to apply Lemma 2.2 once again, we put

Γ := m log γ − n logα + log(α/(2
√

2fk(α))).

For technical reasons we assume that min{n − n1,m − m1} ≥ 7. It then follows from
(3.10) that ∣∣∣∣∣m

(
log γ

logα

)
− (n− 1) +

log(1/(2
√

2fk(α)))

logα

∣∣∣∣∣ < 75

αmin{n−n1,m−m1}
·



On the equation F
(k)
n − Pm = c 43

Applying Lemma 2.2 in the above inequality for all k ∈ [3, 782], we obtain that

min{n− n1,m−m1} ≤ 308.

Again we distinguish two cases depending on min{n−n1,m−m1}. At this point, we work
with inequalities (3.12) or (3.13) depending on whether min{n− n1,m−m1} = n− n1

or m−m1, respectively, and then we apply Lemma 2.2 as before to obtain that

max{n− n1,m−m1} ≤ 618.

Finally, we go back to (3.14) and put

λ := m log γ − (n− 1) logα + log

(
1− γm1−m

√
2fk(α)(1− αn1−n)

)
.

Assuming n ≥ 7 and setting t := m−m1, ` := n− n1, it follows from (3.14) that

0 < |mτ − n+ µt,`| <
A

Bn
, (3.33)

where A := 100, B := α and

τ :=
log γ

logα
, µt,` :=

log
(
(1− γ−t)/(

√
2fk(α)(1− α−`))

)
logα

.

We now apply Lemma 2.2 to inequality (3.33) for all the choices t, ` ∈ [1, 618] in order to
get a small absolute upper bound for n. Indeed, with the help of Mathematica we found
that n < 300, which contradicts our assumption that n > 300. This completes the proof
of Theorem 3.1.





Chapter 4
Ratios of sums of two Fibonacci numbers
equal to powers of 2

In this chapter, we find all solutions to the Diophantine equation Fn+Fm = 2a(Fr +Fs),
where {Fk}k≥0 is the Fibonacci sequence. This paper continues and extends a previous
work which investigated the powers of 2 which are sums of two Fibonacci numbers.

4.1 Introduction

Let {Fk}k≥0 be the Fibonacci sequence given by Fk+2 = Fk+1 + Fk, for all k ≥ 0, where
F0 = 0 and F1 = 1. The problem of determining all integer solutions to Diophantine
equations with Fibonacci numbers has gained a considerable amount of interest among
the mathematicians and there is a very broad literature on this subject. Also, there is the
Lucas sequence, which is as important as the Fibonacci sequence. The Lucas sequence
{Lk}k≥0 follows the same recursive pattern as the Fibonacci numbers, but with initial
conditions L0 = 2 and L1 = 1. For the beauty and rich applications of these numbers
and their relatives one can see Koshy’s book [50].

This research continues and extends the previous work [22] which investigated the
powers of 2 which are sums of two Fibonacci numbers. To be more precise, we find all
solutions of the Diophantine equation

Fn + Fm = 2a(Fr + Fs) (4.1)

45
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in non negative integers n,m, a, r and s. First of all, we introduce some terminology.
Given a positive integer N the Zeckendorf decomposition of N is a representation of the
form

N = Fn1 + Fn2 + · · ·+ Fnk
,

where ni − ni+1 ≥ 2. This always exists and up to identifying F1 with F2, it is unique.
In (4.1), we ignore the solutions for which n = m = r = s = 0 (and any a ≥ 0). If one or
more of the Fibonacci numbers involved in (4.1) equals 1, we then assume that its index is
2. Finally, when N = Fn +Fm and M = Fr +Fs, we assume that n > m ≥ 0, r > s ≥ 0
and that the above representations are the Zeckendorf decompositions of N and M ,
respectively. This rules out cases like m = n − 1 for which N = Fn + Fn−1 = Fn+1, as
well as n = m for which N = Fn + Fn = 2Fn = Fn+1 + Fn−2. Finally, we also ignore the
trivial diagonal solutions (n,m) = (r, s) and a = 0. The rest of solutions will be called
non-degenerate.

The theorem is the following.

Theorem 4.1. Equation (4.1) has two parametric families of non-degenerate solutions
(n,m, a, r, s) with n > m ≥ 0 and r > s ≥ 0, namely

(n, n− 3, 1, n− 1, 0) : Fn + Fn−3 = 2Fn−1 for n ≥ 3 and,

(n, n− 6, 1, n− 2, n− 4) : Fn + Fn−6 = 2(Fn−2 + Fn−4) for n ≥ 6.

When n = 4, 7, in the first and second families, we must take m = 2 (instead of
m = 1), respectively. In addition, putting N := Fn + Fm, there are exactly 12 values of
N = Fn + Fm yielding 21 more sporadic solutions namely:

4 = F4 + F2 = 22F2;

8 = F6 = 22F3 = 23F2;

16 = F7 + F4 = 22(F4 + F2) = 23F3 = 24F2;

18 = F7 + F5 = 2(F6 + F2);

24 = F8 + F4 = 22(F5 + F2) = 23F4;

36 = F9 + F3 = 22(F6 + F2);

56 = F10 + F2 = 22(F7 + F2) = 23(F5 + F3);

60 = F10 + F5 = 22(F7 + F3);

92 = F11 + F4 = 22(F8 + F3);

144 = F12 = 22(F9 + F3) = 23(F7 + F5) = 24(F6 + F2);

288 = F13 + F10 = 23(F9 + F3) = 24(F7 + F5) = 25(F6 + F2);

1008 = F16 + F8 = 24(F10 + F6).
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Our proof uses elementary considerations, linear forms in logarithms and reduction
techniques.

4.2 The proof

4.2.1 The cases a = 0, 1

Although mentioned in the title of the subsection, we do not have to deal with the case
a = 0 because in this case N = M and since we work with the Zeckendorf representations
of N and M , we conclude that the only situations are the diagonal degenerate ones,
namely (n,m) = (r, s). Thus, a ≥ 1. Assume next that n > m. Then

2Fn > Fn + Fm = 2a(Fr + Fs) ≥ 2(Fr + Fs) ≥ 2Fr,

so n > r.

We next deal with the case a = 1. We have

Fn + Fm = 2(Fr + Fs) = 2Fr + 2Fs = Fr+1 + Fr−2 + 2Fs.

The case s = 0 gives r = n− 1, m = r− 2 = n− 3, which is the first parametric family.
If s ≥ 2, we then get

Fn + Fm = Fr+1 + Fr−2 + Fs+1 + Fs−2. (4.2)

If s ≤ r− 5, then the right–hand side of (4.2) has a Zeckendorf decomposition of length
4 (if s > 2) or 3 (if s = 2), and the left–hand side has a Zeckendorf decomposition of
length 2 if m > 0 or 1 if m = 0, a contradiction.

If s = r − 4, then the right–hand side of (4.2) is

Fr+1 + (Fr−2 + Fr−3) + Fr−6 = Fr+1 + Fr−1 + Fr−6.

This is a Zeckendorf decomposition of length 3 except if r = 6, when it is a Zeckendorf
decomposition with two terms namely F7 +F5. This gives (n,m, r, s) = (7, 5, 6, 2), which
gives the only sporadic solution with a = 1 for which N = 18.

If s = r − 3, then the right–hand side of (4.2) is

Fr+1 + 2Fr−2 + Fr−5 = Fr+1 + Fr−1 + Fr−4 + Fr−5 = Fr+1 + Fr−1 + Fr−3,
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which is a Zeckendorf decomposition with 3 terms, which is not convenient for us.

Finally, if s = r − 2, we then get that the right–hand side of (4.2) is

Fr+1 + (Fr−1 + Fr−2) + Fr−4 = Fr+1 + Fr + Fr−4 = Fr+2 + Fr−4,

and this is a Zeckendorf decomposition of length 2 if r > 4 and of length 1 if r = 4.
This gives r = n − 2, m = r − 4 = n − 6 and s = r − 2 = n − 4, which is the second
parametric family of solutions.

From now on, we may assume that a ≥ 2.

4.2.2 Bounding a in terms of n and r

Let (α, β) = ((1 +
√

5)/2, (1−
√

5)/2) be the roots of the equation x2 − x− 1.

It is well-known that the Binet formula

Fn =
αn − βn√

5
holds for all n ≥ 0.

We use that
αk−2 ≤ Fk ≤ αk−1 for all k ≥ 1,

to get
αn−2 ≤ Fn + Fm = 2a(Fr + Fs) ≤ 2a(2Fr) ≤ 2a+1αr−1,

so
2a+1 ≥ αn−r−1.

Also,
2αn−1 ≥ 2Fn ≥ Fn + Fm = 2a(Fr + Fs) ≥ 2aFr ≥ 2aαr−2,

which gives
2a−1 ≤ αn−r+1.

Them it follows from the above the following inequalities.

Lemma 4.1. The inequalities

2a−1 ≤ αn−r+1 and 2a+1 ≥ αn−r−1

hold.
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4.2.3 Six linear forms in logarithms

We take C1 := 1010, C2 := 1012,

fi(n) := C1(2.2C2)
i−1(1 + log n)i, i = 1, 2, 3, 4,

and put
T = {n−m, r − s, r + s, n} = {t1, t2, t3, t4},

where t1 ≤ t2 ≤ t3 ≤ t4. We prove the following lemma.

Lemma 4.2. We have
ti ≤ fi(n), for i = 1, 2, 3, 4.

Notice that the lemma gives

n ≤ t4 ≤ f4(n), which gives n < 1056. (4.3)

In the next section, we will lower the upper bound for n.

Proof. We will apply Matveev’s theorem to 6 linear forms in logarithms labelled

Λ1,Λ{2,1},Λ{2,2},Λ{3,1},Λ{3,2},Λ4,

where
ΛU := α−(n−δUr)2aηU − 1, U ∈ {1, {2, 1}, {2, 2}, {3, 1}, {3, 2}, 4}, (4.4)

where δU = 1 except for U ∈ {{3, 1}, 4} when δU = 0, and with

η1 := 1, η2,1 := (1 + αm−n)−1, η2,2 := 1 + αs−r,

η3,1 :=
√

5(Fr + Fs), η3,2 :=
1 + αr−s

1 + αm−n
, η4 :=

√
5(Fr + Fs)

1 + αm−n
· (4.5)

In this chapter when U = {a, b}, for sake of simplicity, we write U = a, b instead
U = {a, b}.

In order to deduce the upper bounds on ti, we show that

|ΛUi
| < 100

αti+1
, for i = 0, 1, 2, 3, (4.6)

where U0 = 1, U1 ∈ {{2, 1}, {2, 2}}, U2 ∈ {{3, 1}, {3, 2}}, U3 = 4. We also show that
ΛUi
6= 0 for any i = 0, 1, 2, 3, and we show that (4.6) implies, via Matveev’s theorem and

recursively on i, that ti+1 ≤ fi+1(n).
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Since we have many things to prove, we will first explain how to deduce inequalities
(4.6) for i = 0, 1, 2, 3. Then we will show how inequality (4.6) for i = 0 implies t1 ≤ f1(n).
Then, for i ≥ 1, we show how inequality (4.6) for i, Matveev’s theorem, the assumption
that ΛUi

6= 0, and the fact that tj+1 ≤ fj+1(n) holds for j = 0, 1, . . . , i− 1, implies that
ti+1 ≤ fi+1(n).

So, let us first see how they work. Let i = 0. We rewrite our equation (4.1) using
the Binet formula for the Fibonacci numbers as

αn − βn√
5

+
αm − βm√

5
= 2a

(
αr − βr√

5
+
αs − βs√

5

)
,

giving

|αn − 2aαr| = |βn − αm + βm + 2aαs − 2aβr − 2aβs|
≤ |β|n + |β|m + αm + 2aαs + 2a|β|r + 2a|β|s

≤ 2 + αm + 2aαs + 2a+1 ≤ 3(αm + 2aαs)

≤ 3(αm + 2αn−r+s+1) ≤ 3(2α + 1)αmax{m,n−r+s},

where in the above we used that |β| < 1 and Lemma 4.1. Dividing across by αn, we get

|Λ1| = |α−(n−r)2a − 1| < 3(2α + 1)

αmin{n−m,r−s} <
100

αt1
, (4.7)

which we recognise as (4.6) for i = 0. Note that we also get that t1 = min{n−m, r− s}.
In the same way, we prove that (4.6) holds for i = 1, 2, 3. Let’s see the details.

For i = 1, if t1 = n−m, then (4.1) implies that

|αn(1 + αm−n)− 2aαr| = |βn + βm + 2aαs − 2aβr − 2aβs|
≤ 2 + 2aαs + 2a+1 < 3(1 + 2aαs)

< 3(1 + 2αn−r+s+1) < 3(2α + 1)αn−r+s,

so, dividing across by αn(1 + αm−n), we get

|Λ2,1| = |α−(n−r)2a(1 + αm−n)−1 − 1| < 3(2α + 1)

αr−s(1 + αm−n)
<

100

αt2
, (4.8)

which is (4.6) at i = 2. We also note that in this case t1 = n −m, t2 = r − s. On the
other hand, if t1 = r − s, then it follow from (4.1) that

|αn − 2aαr(1 + αs−r)| = | − αm + βn + βm − 2aβr − 2aβs|
≤ αm + 2 + 2a+1|β|s = αm + 2 + 2a+1α−s

< 3(αm + 2αn−r−s+1) < 3(2α + 1)αmax{m,n−r−s},
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and dividing across by αn, we get

|Λ2,2| = |α−(n−r)2a(1 + αs−r)− 1| < 3(2α + 1)

αmin{n−m,r+s} ≤
100

αt2
· (4.9)

Here, t1 = r − s and t2 = min{n − m, r + s}. A similar argument works for i = 2
distinguishing the various possibilities for t1, t2. In the most asymmetric case t1 =
r − s, t2 = r + s, we rewrite equation (4.1) and we get that

|αn − 2a
√

5(Fr + Fs)| = | − αm + βm + βn| ≤ 3αm,

so, dividing across by αn we get

|Λ3,1| = |α−n2a
√

5(Fr + Fs)− 1| < 3

αn−m
<

100

αt3
, (4.10)

which is what we wanted. In the remaining cases, we have {t1, t2} = {n−m, r− s}, and
then we get from (4.1) that

|αn(1 + αm−n)− 2aαr(1 + αs−r)| = |βm + βn + 2aβr + 2aβs|
≤ 2|β|m + 2a+1|β|s < 2α−m + 4αn−r−s+1

≤ (2 + 4α)αmax{−m,n−r−s},

which after dividing it by αn(1 + αm−n) we recognise that it leads to

|Λ3,2| =
∣∣∣∣α−(n−r)2a( 1 + αs−r

1 + αm−n

)
− 1

∣∣∣∣ < 2 + 4α

αmin{n+m,r+s}(1 + αm−n)
<

100

αt3
· (4.11)

Here, we take t3 = min{r + s, n}. Cleary, n > max{n − m, r − s} (because n > r),
so we cannot have n ∈ {t1, t2}. If n 6= t4, we then get that n = t3, which leads to
t4 = r + s < 2n. Thus, by the i = 2 step, we would get that n < f3(n), and later on
t4 = r + s < 2n < 2f3(n) < f4(n). So, the inequality for i = 3 follows right away from
the inequality of i = 2. It remains to study the case when n = t4. In this case, (4.1)
implies that

|αn(1 + αm−n)− 2a(
√

5(Fr + Fs))| = |βn + βm| ≤ 2,

and dividing across by αn(1 + αm−n) we get

|Λ4| =

∣∣∣∣∣α−n2a

(√
5(Fr + Fs)

1 + αm−n

)
− 1

∣∣∣∣∣ < 2

αn(1 + αm−n)
<

2

αn
<

100

αt4
, (4.12)

which is inequality (4.6) at i = 3.
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Having justified inequalities (4.6), let us see how to deduce the upper bounds on ti.
We will prove that ΛU 6= 0 later. So far, to get a lower bound on ΛU , note that

ΛU = αb11 α
b2
2 α

b3
3 − 1,

where

α1 = α, α2 = 2, α3 = ηU , b1 = −(n− δUr), b2 = a, b3 = 1.

Notice that K := Q(α) has degree D = 2 and contains α1, α2, α3. Next, b1 ≤ n. As for
b2, Lemma 4.1 tells us that 2a−1 ≤ αn−r+1. If r ≥ 2, then we get a < n since α < 2.
On the other hand, if r = 1, then Fn + Fm = 2a, which implies that n ≤ 7 by the main
result in [22], and then the inequalities ti < fi(n) hold anyway for all i = 1, 2, 3, 4. Thus,
we may take B := n > max{|b1|, |b2|, |b3|}. We take A1 := logα, A2 := 2 log 2. At i = 0,
we take U0 := 1, ηU0 = η1 = 1, so we have a linear form in two logarithms only. By
Matveev’s Theorem 2.6, we get

|ΛU0| > exp(−C0(1 + log n)),

where

C0 = 1.4× 305 × 24.522(1 + log 2)(logα)(2 log 2) < 4× 109.

Applying inequality (4.6) at i = 0, we get

t1 logα < log 100 + C0(1 + log n) < 4.1× 109(1 + log n),

so

t1 <
4.1

logα
× 109(1 + log n) < 1010(1 + log n) < f1(n).

This is the start. Assume now that i ≥ 2 and that tj ≤ fj(n) has been established for
j = 1, . . . , i− 1. We apply Matveev’s Theorem 2.6 to |ΛUi−1

|. We then get that

|ΛUi−1
| > exp(−C3(1 + log n)(2h(ηUi−1

))),

where

C3 = 1.4× 306 × 34.522(1 + log 2)(logα)(2 log 2) < 7× 1011.

It remains to bound h(ηUi−1
). Note that

h(ηUi−1
) ≤


t1(logα)/2 + log 2 i = 2,

(r + s) logα + log 2 + (log 5)/2, i = 3, or
(r − s)(logα)/2 + (n−m)(logα)/2 + 2 log 2, i = 3,

(n−m)(logα)/2 + (r + s) logα + 2 log 2 + (log 5)/2, i = 4.

(4.13)
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Since 2 log 2 + (log 5)/2 < 3, it follows from the above that

h(ηUi−1
) <

3ti−1 logα

2
+ 3 <

3

2
(fi−1(n) logα + 2) .

We thus get that

ti logα < log 100 + 7× 1011 × 3(fi−1(n) logα + 2)(1 + log n),

which gives

ti <
log 100

logα
+ 7× 1011 × 3

(
fi−1(n) +

2

logα

)
(1 + log n)

< 2.2× 1012fi−1(n)(1 + log n) = fi(n),

which is what we wanted. In the above, we used the fact that

log 100

logα
+ 7× 1011 × 3

(
fi−1(n) +

2

logα

)
(1 + log n)

< (0.71× 1012 × 3)

(
fi−1(n) +

2

logα

)
(1 + log n)

< (2.13× 1012)(1.01fi−1(n))(1 + log n)

< 2.2× 1012fi−1(n)(1 + log n) = fi(n),

for any i ≥ 2 and any n ≥ 2.

4.2.4 Justifying that ΛU 6= 0

For i = 0, the form Λ1 appears in the left–hand side of (4.7). This is zero if and only if
αn−r = 2a. This implies n = r and a = 0, which is not allowed. For i = 1, the form is
the one appearing in the left–hand sides of one of (4.8) or (4.9). This gives

α−(n−r)2a(1 + α−t1)±1 = 1.

Taking norms and absolute values in K, we get that

22a = |N(1 + α−t1)|±1 = |N(αt1 + 1)|±1.

The one with negative exponent cannot hold since 1 + αt1 is an algebraic integer. The
one with positive exponent gives

22a = (αt1 + 1)(βt1 + 1) = (αβ)t1 + 1 + (αt1 + βt1) = Lt1 + 1 + (−1)t1 .
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If t1 is odd, we get Lt1 = 22a. Since 8 never divides Lk for any k, we get a = 1 and
t1 = 3. If t1 is even, we get

22a = Lt1 + 2 =

{
5F 2

t1/2
if 2‖t1,

L2
t1/2

if 4 | t1.

The first case is impossible since 5 does not divide 22a. The second case leads to Lt1/2 = 2a

with t1/2 being even, which gives again that a = 1. However, the case a = 1 was treated
by elementary arguments using Zeckendorf decompositions in the first section of the
proof and we are in the case a ≥ 2. Thus, ΛU1 is nonzero.

For i = 3, if ηU2 =
√

5(Fr+Fs), then the form appears in the left–hand side of (4.10).
If it is zero, then −αm + βm + βn = 0. If m = 0, we get βn = 0, which is impossible,
while if m 6= 0, then m ≥ 2, so α2 ≤ αm = |βm + βn| < 2, which is a contradiction. If
i = 3 and ηU2 = (1 + αs−r)/(1 + αm−n), then the form appears in the left–hand side of
(4.11). If it zero, we get

2aα−(n−r) =
1 + αm−n

1 + αr−s
.

Taking norms we get

22a =

∣∣∣∣N (1 + αm−n

1 + αs−r

)∣∣∣∣ =
|N(αn−m + 1)|
|N(αr−s + 1)|

=
Ln−m + 1 + (−1)n−m

Lr−s + 1 + (−1)r−s
·

If n−m is odd, we get 22a = Ln−m/(Lr−s + 1 + (−1)r−s). Since 8 - Lk for any k ≥ 1, we
get that a = 1, which is not convenient for us. Thus, n−m is even. If 2‖n−m, we get

22a =
5F 2

(n−m)/2

Lr−s + 1 + (−1)r−s
·

If r − s is odd, the denominator in the right–hand side above is Lr−s a number coprime
to 5, so the above equation is impossible since 5 does not divide 22a. If 4 | r − s, then
the denominator in the right–hand side above is L2

(r−s)/2, a number coprime to 5, and

we get the same contradiction. Finally, it follows that 2‖r − s, so the equation is

2a =
F(n−m)/2

F(r−s)/2
·

Since (n−m)/2 is odd, it follows that F(n−m)/2 is even but not a multiple of 4, so a = 1,
again a contradiction. Finally, if 4 | n−m, we get

22a =
L2
(n−m)/2

Lr−s + 1 + (−1)r−s
·

Note that L(n−m)/2 can be even but not a multiple of 4 since (n −m)/2 is even. This
shows again that a = 1, a contradiction. Thus, ΛU2 6= 0 in all cases. When i = 4, the
form ΛU3 appears in the left–hand side of (4.12). The condition ΛU3 = 0 then implies
βn + βm = 0, so βn−m = −1, which is impossible. Thus, ΛU3 6= 0.
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4.2.5 Lowering the bounds

We need to find better bounds on ti for i = 1, 2, 3, 4 then the ones implied by Lemma
4.2 for n < 1056.

Bounding t1

Assume t1 ≥ 12. Then the right–hand side of inequality (4.7) is < 1/2. It thus follows
that

|a log 2− (n− r) logα| < 200

αt1
·

Dividing across by (n− r) log 2, we get∣∣∣∣ a

n− r
− logα

log 2

∣∣∣∣ < 200

(n− r)(log 2)αt1
· (4.14)

Suppose that t1 ≥ 290. Then the right–hand side above is smaller than 1/(2(n − r)2).
Indeed, the inequality

200

(n− r)(log 2)αt1
<

1

2(n− r)2
,

is equivalent to (
400

log 2

)
(n− r) < αt1

and this last inequality is fulfilled for t1 > 290 since n − r ≤ n < 1056. By Legendre’s
result Lemma 2.1, a/(n− r) = pk/qk for some convergent pk/qk of (logα)/(log 2). Since
q113 ≤ 1056 < q114, it follows that k ≤ 113. Since max{aj : 0 ≤ j ≤ 114} = 134,
we get, again by Lemma 2.1, that the left–hand side of (4.14) is bounded below by
1/(136(n− r)2). We thus get that

1

136(n− r)2
<

200

(n− r)(log 2)αt1
,

so

αt1 < 136

(
200

log 2

)
(n− r) < 4× 1060, so t1 < 290,

a contradiction. This shows that t1 ≤ 290.
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Bounding t2

We assume that t2 ≥ 300. We work with inequality (4.8) or (4.9) according to whether
t1 = n−m or t1 = r − s, respectively. In either case, since 100/αt2 < 1/2, we get that

|a log 2− (n− r) logα± logL| < 200

αt2
where L := 1 + α−t1 .

Dividing both sides by logα, we get

|aτ − (n− r)± µ| < 200

(logα)αt2
<

A

Bt2
, (4.15)

where we take

τ =
log 2

logα
, A = 420, B = α, µ =

log(1 + α−t1)

logα
, t1 = 0, 2, . . . , 290.

Note that we did not consider t1 = 1, since t1 is one of n −m and r − s, and we work
with Zeckendorf representations of N and M , respectively. In the case t1 = 0, 3, we get

µ =
log 2

logα
,

log 2

logα
− 1 ∈ {τ, τ − 1}, respectively,

and the argument from the analysis of the bound on t1 (continued fraction of τ) shows
that t2 ≤ 290. For t1 ∈ {2, 4, . . . , 290}, we use the Baker-Davenport reduction method.
We choose the convergent p/q := p119/q119 given by

5752938745241556644300038224577169621828660456346659241762182

3993931203496220640429491278118964138612545968185396080381853
·

We choose M := 1056, so 6M < 3× 1060 < q. Then M‖qτ‖ < 0.00005, while

‖qµ‖ > 0.0023 for all t1 ∈ {2, 4, . . . , 290}.

Hence, ‖qµ‖ −M‖qτ‖ > ε := 0.0005 for our choices of t1. We thus get that

t2 ≤
log(Aqε−1)

logB
< 324.

Bounding t3

Here, we need to increase p/q. We choose p/q = p199/q199 and get that q < 1.3× 10103.
We compute M‖τq‖ < 1.7 × 10−47. In the asymmetric case t1 = r − s, t2 = r + s,
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we have 2r = t1 + t2 < 620, so r < 310. We generated all numbers of the form
µ := (log(

√
5(Fr + Fs)))/(logα) with 0 ≤ s ≤ r − 2 < 310. They appear in the analog

of (4.15) with t2 replaced by t3 which is

|aτ − (n− δUr)± µ| <
200

(logα)αt3
<

A

Bt3
· (4.16)

In our particular situation, δU = 0. Computing ‖qµ‖, we get that this number is >
1.6× 10−37 in all cases. Hence, 1.6× 10−37− 1.7× 10−47 > ε := 10−37. We then get that

t3 <
log(Aqε−1)

logα
< 683.

In the case when {t1, t2} = {n − m, r − s}, we computed (1 + α−t2)/(1 + α−t1) for
2 ≤ t1 < t2 < 324. We ignore the case t1 = t2 since then ηU = 1 and t3 ≤ 290 by using the
continued fraction of τ as in the bound for t1. We also ignored the case {t1, t2} = {2, 6}.
Indeed, if say n−m = 6, r−s = 2, we then have Fn+Fm = Fn+Fn−6 = 2(Fn−2 +Fn−4),
so we get 2(Fn−2 + Fn−4) = 2a(Fr + Fr−2). This gives Fn−2 + Fn−4 = 2a−1(Fr + Fr−2).
The case a = 1 gives the second known parametric family. The case a− 1 > 0, yields a
new solution (n′,m′, a′, r′, s′) = (n− 2, n− 4, a− 1, r, r − 2) with n′ −m′ = 2 = r′ − s′,
so ηU = 1, showing that t3 ≤ 290.

The case r − s = 6, n−m = 2 is similar, namely we have

Fn + Fn−2 = Fn + Fm = 2a(Fr + Fr−6) = 2a+1(Fr−2 + Fr−4),

so we got a new solution (n′,m′, a′, r′, s′) = (n,m, a + 1, r − 2, r − 4) with n′ − m′ =
r′ − s′ = 2 and we again get t3 ≤ 290.

So, now we computed all numbers of the form ‖qµ‖ for such values of µ obtaining
that the minimum exceeds 5.5× 10−6. Hence, we can take ε := 5× 10−6. We then get

t3 <
log(Aqε−1)

logα
< 532.

To summarise, we have that t3 < 683.

Bounding t4

There is a lot of work to be done here. First of all, if n < 683, we are in good shape. If
not 2r = (r + s + r − s) < 683 + 324 < 1100, so r < 510. Having now s < r < 510 and
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n−m < 683, we compute an upper bound on the height of the number h(ηU) for U = 4
appearing in (4.5). Indeed, by (4.13) we get that h(ηU3) = h(η4) ≤ 700. Using now the
upper bound (4.12) on Λ4 and Matveev’s theorem, we obtain

n logα < log 100 + C3(700)(1 + log n) < 5× 1014(1 + log n)

giving
n < 1.1× 1015(1 + log n),

and so n < 1017. With this new upper bound for n we go back to the reductions
for t1, t2, t3, and repeating the continued fractions arguments and the Baker-Davenport
reductions we get t1 < 100, t2 < 115, t3 < 235.

Let us now work on reducing the upper bound for n even more. In fact, if n < 235,
then we are in good shape. If not 2r = (r + s + r − s) < 235 + 115 < 350, so r < 175.
On the other hand, since 2/αn < 1/2, from (4.12) we have that

|aτ − n+ ν| < 200

(logα)αt4
<

A

Bt4
, (4.17)

where

ν =
log(
√

5(Fr + Fs)/(1 + α−(n−m)))

logα
·

As mentioned before, Baker-Davenport reduction does not work when µ is a linear com-
bination of 1 and (log 2)/(logα) since then ε < 0. In previous cases we identified eas-
ily when that was so. That is, when µ = (log(1 + α−t1))/(logα) the only possibility
for t1 ≥ 2 for which this number was a linear combination of 1 and (log 2)/(logα)
was for t1 = 3. Similarly, for µ = (log((1 + α−t2)/(1 + α−t1)))/(logα), the only pos-
sibility for t3 > t2 ≥ 2 for which this number was a linear combination of 1 and
(log 2)/(logα) was for (t1, t2) = (2, 6). Here, we have to decide when is the number
ν = (log(

√
5(Fr + Fs)/(1 + α−t)))/(logα), where t = n −m = ti for some i = 1, 2, 3 a

linear combination of 1 and (log 2)/(logα). Well, if this is so, then
√

5(Fr + Fs)

1 + α−(n−m)
= ±2bαc

for some integers b, c. Taking norms in K and absolute values we get

5(Fr + Fs)
2

Ln−m + 1 + (−1)n−m
= 22b.

If n−m is odd, or 4 | n−m, then the denominator in the left–hand side above is Ln−m
or L2

(n−m)/2. Since 5 - Lk for any k, the above equation is impossible. So, 2‖n−m, and

therefore the denominator in the left–hand side above is 5F 2
(n−m)/2. Hence

Fr + Fs = 2bF(n−m)/2.
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On the other hand, 2a(Fr+Fs) = Fn+Fm = F(n−m)/2L(n+m)/2, where the right–hand side
factorisation above holds because 2‖n−m. Thus, we get L(n+m)/2 = 2a+b, which implies
that (n + m)/2 = 3, so n ≤ 6. So, when doing the last Baker-Davenport reduction we
eliminate the above instances.

Finally, applying Lemma 2.2 to inequality (4.17), for all choices n, r, s with

0 ≤ s ≤ r − 2 < 173 and 2 ≤ n−m ≤ 235,

we obtain that n ≤ 400.

For further convenience of the reader we mention that in the computations above
we did not consider the cases (s, r, n −m) = (0, 2, 2) and (s, r, n −m) = (0, r, 2r) with
r odd, since then ε < 0 and so Lemma 2.2 does not apply. In fact, if (s, r, n − m) =
(0, 2, 2), (0, r, 2r) with r odd, we get that ν = 1, r, respectively. In the first case above we
obtain the sporadic solution F4 +F2 = 22F2. In the the second case the original equation
is transformed into the simpler equation Lm+r = 2a, and so (m, r, a) = (0, 3, 2). Hence
we get the solution F6 = 22F3.

4.2.6 The final computation

As we saw in the preceding subsection, it is enough to look for solutions to equation
(4.1) for n ≤ 400. What we did, is to generate Fn + Fm for all m ≤ n − 2 ≤ 400.
Let L1 be the set of such numbers. Next, we created a new list L2 in the following
way. For each member N of L1 for which 4 | N , we put in L2 the numbers N/2k for
all k = 2, 3, . . . , ν2(N). Here, ν2(N) is the exponent of 2 in the factorisation of N . We
computed L1 ∩ L2 obtaining

L1 ∩ L2 = {1, 2, 3, 4, 6, 7, 9, 14, 15, 18, 23, 36, 63}.

We also found that max{ν2(N) : N ∈ L1} = 18. From these facts and the original
equation (4.1), we can conclude that

Fn ≤ Fn + Fm ≤ 63 · 218 < 108,

and therefore n ≤ 40. Then a brute force search with Mathematica for n ≤ 40 and a ≥ 2
gives the sporadic solutions from the statement of the theorem. This completes the proof
of Theorem 4.1.





Chapter 5
The 2-adic and 3-adic valuation of the
Tripell sequence and an application

Let {Tn}n≥0 denote the Tripell sequence, defined by the third-order linear recurrence
Tn = 2Tn−1 +Tn−2 +Tn−3 for n ≥ 3, with T0 = 0, T1 = 1 and T2 = 2 as initial conditions.
In this chapter, we study the 2-adic and 3-adic valuation of the Tripell sequence and, as
an application, we determine all Tripell numbers which are factorials.

5.1 Introduction

In number theory, for a given prime number p, the p-adic valuation, or p-adic order, of
a non-zero integer n, denoted by νp(n), is the exponent of the highest power of p which
divides n. The p-adic order of certain linear recurrence sequences has been studied by
many authors. For example, the p-adic order of the Fibonacci numbers was completely
characterized by Lengyel in [52]. In 2016, Sanna [70] gave simple formulas for the p-adic
order νp(un), in terms of νp(n) and the rank of apparition of p in {un}n≥0, where {un}n≥0
is a nondegenerate Lucas sequence. In particular, from the main theorems of Lengyel
and Sanna we extract the following results:
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Theorem 5.1. For each positive integer n and each prime number p 6= 2, 5, we have

ν2(Fn) =


0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12).

(5.1)

In addition, ν5(Fn) = ν5(n) and

νp(Fn) =

{
νp(n) + νp(F`(p)), if n ≡ 0 (mod `(p));

0, otherwise;
(5.2)

where `(p) is the least positive integer such that p | F`(p).

Theorem 5.2. For each positive integer n and each prime number p 6= 2, we have that

ν2(Pn) = ν2(n) and νp(Pn) =

{
νp(n) + νp(P`(p)), if n ≡ 0 (mod `(p));

0, otherwise;
where `(p) is

the least positive integer such that p | P`(p).

However, much less is known about the behavior of the p-adic valuation of linear
recurrence sequences of higher order. A particular case of linear recurrence sequences
of order 3 was studied by Marques and Lengyel in [53]. They characterized the 2-adic
valuation of the Tribonacci sequence. The Tribonacci sequence {tn}n≥0 starts with t0 = 0,
t1 = 1, t2 = 1 and satisfies the recurrence tn = tn−1 + tn−2 + tn−3 for all n ≥ 3. Results
on the 2-adic valuation of Tetra- and Pentanacci numbers can be found in [54]. See also
[73, 82] for the behaviour of the 2-adic valuation of generalized Fibonacci numbers and
some applications to certain Diophantine equations.

The Pell sequence and its generalizations have been studied by some authors (see
[47, 48, 49]). For example, in [48], Kiliç gave some relations involving Fibonacci and
generalized Pell numbers showing that generalized Pell numbers can be expressed as the
summation of the Fibonacci numbers.

One of the generalizations of the Pell sequence is what we have called the Tripell
sequence {Tn}n≥0. This sequence starts with T0 = 0, T1 = 1, T2 = 2 and each term
afterward is given by the recurrence

Tn = 2Tn−1 + Tn−2 + Tn−3. (5.3)

Below we present the first few elements of the Tripell sequence:

0, 1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, . . . (5.4)
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In this research we use the theory of constructing identities given by Zhou in [83] and
several congruence results to partially characterize the 2-adic valuation of the Tripell
sequence and fully characterize the 3-adic valuation ν3(Tn).

We next present our theorems in which we give simple formulas for the 2-adic valu-
ation ν2(Tn) (for most of the values of n) and the 3-adic valuation ν3(Tn) of the Tripell
numbers in terms of ν2(n) and ν3(n), respectively.

Theorem 5.3. The 2-adic valuation of the nth Tripell number is given by

ν2(Tn) =



0, if n ≡ 1, 3, 4, 5 (mod 7);

2, if n ≡ 9 (mod 14);

1, if n ≡ 2, 7 (mod 14);

ν2(n) + 1, if n ≡ 0 (mod 14);

ν2(n+ 1) + 1, if n ≡ 13 (mod 14).

If n ≡ 6 (mod 14), then ν2(Tn) = ν2(n) + 1 except when n ≡ 1280 (mod 1792) or,
equivalently, when n is of the form

n = 14(t27 + 26 + 24 + 23 + 2 + 1) + 6 = 1792t+ 1280 with t ≥ 0.

Figure 5.1 shows the first few values of ν2(Tn).
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Figure 5.1: The 2-adic valuation of the Tripell numbers

Theorem 5.4. The 3-adic valuation of the nth Tripell number is given by

ν3(Tn) =


0, if n ≡ 1, 2, 3, 4 (mod 6);

ν3(n), if n ≡ 0 (mod 6);

ν3(n+ 1), if n ≡ 5 (mod 6).
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As a consequence, we notice that ν3(T2n+1) = ν3(T2n+2) for n ≥ 1. Figure 5.2 shows
the first few values of ν3(Tn).
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Figure 5.2: The 3-adic valuation of the Tripell numbers

There are many papers in the literature dealing with Diophantine equations obtained
by asking that members of some fixed binary recurrence sequence be factorials or belong
to some other interesting sequence of positive integers. For example, in [10], all Fibonacci
numbers which are sums of three factorials were found, while in [56], all factorials which
are sums of three Fibonacci numbers were found.

We also present an application of Theorem 5.4, in which we determine all Tripell
numbers which are factorials. We have the following result.

Theorem 5.5. The only solutions of the Diophantine equation

Tn = m! (5.5)

in positive integers n,m are (n,m) ∈ {(1, 1), (2, 2)}.

We point out that for finding factorials belonging to some binary recurrence se-
quences, or related problems, the existence of primitive divisors (see [9]) and other divis-
ibility properties are sometimes used. However, similar divisibility properties for linear
recurrences of higher order are not known, and therefore it is necessary to attack the pro-
blem differently. It turns out that one can use the p-adic valuation of the terms of these
sequences and use it to establish upper bounds on the solutions of some Diophantine
equations.

In this chapter we prove Theorem 5.5 by a simple method which makes use of the
3-adic valuation of the terms of the Tripell sequence.
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5.2 Auxiliary results

In this section, we present some auxiliary results that are needed in the proofs of the
main theorems. To begin with, we give an auxiliary lemma, which is a consequence of
Legendre’s formula for νp(m!) (see [51]).

Lemma 5.1. For any integer m ≥ 1 and prime p, we have

m

p− 1
−
⌊

logm

log p

⌋
− 1 ≤ νp(m!) ≤ m− 1

p− 1
,

where bxc denotes the largest integer less than or equal to x.

A proof of Lemma 5.1 can be found in [58].

We next mention some facts about the Tripell sequence, which will be used later.
First, it is easily checked that its characteristic polynomial f(x) = x3 − 2x2 − x − 1 is
irreducible in Q[x]. In addition, f(x) has a real root ζ > 1 and two conjugate complex
roots inside the unit circle. In fact,

ζ =
1

3

2 +
3

√
61

2
− 9
√

29

2
+

3

√
61

2
+

9
√

29

2

 = 2.54682 . . . .

The following lemma shows the exponential growth of {Tn}n≥0.

Lemma 5.2. For all n ≥ 1, we have

ζn−2 ≤ Tn ≤ ζn−1.

Proof. We prove Lemma 5.2 by using strong induction on n. First, note that the result
is true for n = 1, 2, 3 because

ζ−1 ≤ T1 = 1 ≤ ζ0, ζ0 ≤ T2 = 2 ≤ ζ1, and ζ1 ≤ T3 = 5 ≤ ζ2.

Suppose now that the inequality ζm−2 ≤ Tm ≤ ζm−1 holds for all m with 1 ≤ m ≤ n−1.
It then follows from the recurrence relation for (Tn)n≥0 (5.3) that

2ζn−3 + ζn−4 + ζn−5 ≤ Tn ≤ 2ζn−2 + ζn−3 + ζn−4.

So
ζn−5(2ζ2 + ζ + 1) ≤ Tn ≤ ζn−4(2ζ2 + ζ + 1),

which, combined with the fact that ζ3 = 2ζ2 + ζ + 1, gives the desired result. Thus,
Lemma 5.2 holds for all positive integers n.
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Now, we apply the Theory of Constructing Identities to obtain the following identity
involving Tripell numbers. This result plays a crucial role in the proofs of Theorems 5.3
and 5.4.

Lemma 5.3. For all m,n, with m ≥ 3 and n ≥ 0, we have that

Tm+n = Tm−1Tn+2 + (Tm−2 + Tm−3)Tn+1 + Tm−2Tn

= Tm−1Tn+2 + (Tm − 2Tm−1)Tn+1 + Tm−2Tn.

Proof. It is easily seen that the lemma holds for m = 3, so we assume that m ≥ 4. First,
note that h(x) = xm+n − 2xm+n−1 − xm+n−2 − xm+n−3 ≡ 0 (mod f(x)), where f(x) is
the characteristic polynomial of the sequence {Tn}n≥0. Thus,

h(x)(T1 + T2x
−1 + · · ·+ Tm−3x

−m+4 + Tm−2x
−m+3)

= T1x
m+n + T2x

m+n−1 + T3x
m+n−2 + · · ·+ Tm−3x

n+4 + Tm−2x
n+3

− 2T1x
m+n−1 − 2T2x

m+n−2 − 2T3x
m+n−3 − · · · − 2Tm−3x

n+3 − 2Tm−2x
n+2

− T1xm+n−2 − T2xm+n−3 − T3xm+n−4 − · · · − Tm−3xn+2 − Tm−2xn+1

− T1xm+n−3 − T2xm+n−4 − T3xm+n−5 − · · · − Tm−3xn+1 − Tm−2xn

= T1x
m+n − (2Tm−2 + Tm−3 + Tm−4)x

n+2 − (Tm−2 + Tm−3)x
n+1 − Tm−2xn

≡ 0 (mod f(x)).

Since T1 = 1 and 2Tm−2 + Tm−3 + Tm−4 = Tm−1 by (5.3), we get that

xm+n ≡ Tm−1x
n+2 + (Tm−2 + Tm−3)x

n+1 + Tm−2x
n (mod f(x)).

By Theorem 2.1, we have

Tm+n = Tm−1Tn+2 + (Tm−2 + Tm−3)Tn+1 + Tm−2Tn.

5.3 Proof of Theorem 5.3

In order to prove Theorem 5.3, we first prove the following lemma.
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Lemma 5.4. For all s, t ≥ 1, we have

T2t7s−2 ≡ 1 (mod 2t+2) and T2t7s−i ≡

{
2t+1 (mod 2t+2), if s ≡ 1 (mod 2);

0 (mod 2t+2), if s ≡ 0 (mod 2);

(5.6)
for i = 0, 1.

Proof. We first need to prove the congruences

T14s−2 ≡ 1 (mod 8) and T14s−i ≡

{
4 (mod 8), if s ≡ 1 (mod 2);

0 (mod 8), if s ≡ 0 (mod 2);
(5.7)

for i = 0, 1. Indeed, suppose s is odd, so s = 2r + 1 for some integer r ≥ 0. With
Mathematica we can easily that (Tn mod 8)n≥0 is periodic with period 28. By using
this fact we have that

T14(2r+1)−2 = T28r+12 ≡ T12 = 22929 ≡ 1 (mod 8),

T14(2r+1)−1 = T28r+13 ≡ T13 = 58396 ≡ 4 (mod 8),

T14(2r+1) = T28r+14 ≡ T14 = 148724 ≡ 4 (mod 8).

This proves that (5.7) holds when s is odd. A similar argument can be applied in the
case where s is even. Thus, (5.7) holds for all s ≥ 1. Now for a fixed s, we use induction
on t to prove the congruences given by (5.6). Note that, by (5.7), (5.6) holds for t = 1.
Suppose now that congruences (5.6) are true for t − 1. Suppose further that s is odd.
The case when s is even can be handled in a similar way. Thus,

T2t−17s−2 ≡ 1 (mod 2t+1) and T2t−17s−i ≡ 2t (mod 2t+1),

for i = 0, 1, and so

T2t−17s−2 = 1 + 2t+1k1, T2t−17s−1 = 2t + 2t+1k2, and T2t−17s = 2t + 2t+1k3,

for some integers k1, k2 and k3. In addition, by using the recurrence relation (5.3) once
again, we deduce that

T2t−17s−2 + T2t−17s−3 = T2t−17s − 2T2t−17s−1.

We derive from all this and Lemma 5.3 that

T2t7s−2 = T(2t−17s)+(2t−17s−2)

= (2t + 2t+1k2)(2
t + 2t+1k3) + (2t + 2t+1k3 − 2(2t + 2t+1k2))(2

t + 2t+1k2)

+ (1 + 2t+1k1)(1 + 2t+1k1)

≡ 1 (mod 2t+2),
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as desired. Similarly, we can prove that

T2t7s−1 = T(2t−17s+1)+(2t−17s−2) ≡ 2t+1 (mod 2t+2) and

T2t7s = T(2t−17s+2)+(2t−17s−2) ≡ 2t+1 (mod 2t+2).

This completes the proof of Lemma 5.4.

Proof of Theorem 5.3

To prove this theorem, we need to work on each case separately.

(a) Let n ≡ a (mod 7) with a ∈ {1, 3, 4, 5}. Then it is not difficult to see that n ≡ 7i+a
(mod 28) for some i ∈ {0, 1, 2, 3}. Since (Tn mod 8)n≥0 is periodic with period 28,
it follows that Tn ≡ T7i+a (mod 8). But one can check by hand that T7i+a ≡ 1, 3, 5
or 7 (mod 8), and so ν2(Tn) = 0.

(b) If n ≡ 9 (mod 14), then n ≡ 9 or 23 (mod 28). By using the periodicity of (Tn
mod 8)n≥0 and taking into account that T9 ≡ T23 ≡ 4 (mod 8), we conclude that
ν2(Tn) = 2.

(c) Suppose now that n ≡ a (mod 14) with a ∈ {2, 7}. Then n ≡ a or 14 + a
(mod 28). Here we have that T2 ≡ T16 ≡ T21 ≡ 2 (mod 8) and T7 ≡ 6 (mod 8).
Thus, ν2(Tn) = 1.

(d) If n ≡ 0 (mod 14), then n = 2t7s for some s, t ≥ 1 with s odd. Hence ν2(n) = t.
In addition, by Lemma 5.4 we have that Tn ≡ 2t+1 (mod 2t+2). Thus, ν2(Tn) =
t+ 1 = ν2(n) + 1.

(e) If n ≡ 13 (mod 14), then n = 2t7s − 1 for some s, t ≥ 1 with s odd. From this
ν2(n+ 1) = t. Further, by Lemma 5.4 we get Tn ≡ 2t+1 (mod 2t+2). Consequently,
ν2(Tn) = t+ 1 = ν2(n+ 1) + 1.

(f) We finally deal with the special case when n ≡ 6 (mod 14). Here we have to
prove that ν2(Tn) = ν2(n) + 1 except for some special case for n that will be fully
characterized. In order to do this, we first write n as n = 14s + 6 for some s ≥ 1.
We now distinguish two cases.

Case 1. s is even. In this case n ≡ 6 (mod 28) and so ν2(n) = 1. In addition,
since (Tn mod 8)n≥0 is periodic with period 28, we can conclude that Tn ≡ T6 =
84 ≡ 4 (mod 8), and therefore, ν2(Tn) = 2. Consequently, ν2(Tn) = ν2(n) + 1.
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Case 2. s is odd. Here one of the following cases must hold (for some integer
t ≥ 0):

(i) s = 22t+ 1, (v) s = 24t+ 2 + 1,
(ii) s = 23t+ 22 + 2 + 1, (vi) s = 25t+ 23 + 2 + 1,
(iii) s = 27t+ 24 + 23 + 2 + 1, (vii) s = 27t+ 26 + 24 + 23 + 2 + 1.
(iv) s = 26t+ 25 + 24 + 23 + 2 + 1,

(5.8)

We shall work only with the first case, when s = 22t+1, in order to avoid unneces-
sary repetitions. The other cases, except the last one, are handled in much the same
way. We will prove that ν2(T14(22t+1)+6) = ν2(14(22t+1)+6)+1 for all t ≥ 0, by
using induction on t. First, note that the base case t = 0 follows from ν2(20) = 2
and ν2(T20) = ν2(40585304) = 3. Suppose now that the result holds true for t− 1.
Then with m = 14(22(t− 1) + 1), we have that ν2(Tm+6) = 3 and

T14(22t+1)+6 = T56+14(22(t−1)+1)+6

= T55Tm+8 + (T54 + T53)Tm+7 + T54Tm+6

= 24k1Tm+8 + 24k2Tm+7 + T542
3k3,

for some odd integers k1, k2 and k3. By using this and taking into account that
T54 is odd, we conclude that ν2(T14(22t+1)+6) = 3 = ν2(14(22t) + 20) + 1.

Remark 5.1. As we saw before, we proved Theorem 5.3 in the special case when n ≡ 6
(mod 14) by using mathematical induction on t and this technique worked for almost
all of the forms given in (5.8). However, the induction argument does not work when
s = 27t+ 26 + 24 + 23 + 2 + 1, since the base case t = 0 does not hold.

5.4 Proof of Theorem 5.4

Here we discuss the 3-adic valuation of the Tripell numbers in a similar way as in the
previous section.

Lemma 5.5. For all s, t ≥ 1, s 6≡ 0 (mod 3), we have

T2·3ts−1 ≡

{
2 · 3t (mod 3t+1), if s ≡ 1 (mod 3);

3t (mod 3t+1), if s ≡ 2 (mod 3);

T2·3ts ≡

{
3t (mod 3t+1), if s ≡ 1 (mod 3);

2 · 3t (mod 3t+1), if s ≡ 2 (mod 3);
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and

T2·3ts+1 ≡

{
1 + 2 · 3t (mod 3t+1), if s ≡ 1 (mod 3);

1 + 3t (mod 3t+1), if s ≡ 2 (mod 3).

Proof. The proof proceeds in a similar way as that of Lemma 5.4. Indeed, using the
fact that (Tn mod 9)n≥0 is periodic with period 18, one can prove that the congruences
are valid for all s and t = 1 (details are left to the reader). Thus, we shall consider the
general case for any t and fixed s.

Suppose first that s ≡ 1 (mod 3) and the congruences of the lemma are true for t−1.
Hence T2·3t−1s−2 ≡ 1 + 3t−1 (mod 3t) and consequently

T2·3t−1s−2 = 1 + 3t−1 + 3tk3, T2·3t−1s−1 = 2 · 3t−1 + 3tk2,
T2·3t−1s = 3t−1 + 3tk1, T2·3t−1s+1 = 1 + 2 · 3t−1 + 3tk4,

(5.9)

for some integers k1, k2, k3 and k4. We next show that congruences of the lemma are also
true for t. To do this, we first need to compute T2(2·3t−1s)+i for i ∈ {−1, 0, 1}. Indeed, by
applying the summation identity from Lemma 5.3 and (5.9) we obtain

Ta := T2(2·3t−1s)−1 = T(2·3t−1s+1)+(2·3t−1s−2)

≡ 2 · 3t−1 + 3tk2 + 2 · 3t−1 + 3tk2 (mod 3t+1)

≡ 3t−1 + 3t + 2 · 3tk2 (mod 3t+1),

Tb := T2(2·3t−1s) = T(2·3t−1s+2)+(2·3t−1s−2)

≡ 3t−1 + 3tk1 + 2 · 32t−2 + 3t−1 + 32t−2 + 3tk1 (mod 3t+1)

≡ 2 · 3t−1 + 2 · 3tk1 (mod 3t+1),

and

Tc := T2(2·3t−1s)+1 = T(2·3t−1s+2)+(2·3t−1s−1)

≡ 1 + 2 · 3t−1 + 2 · 3t−1 + 3tk4 + 3tk4 + 4 · 22t−2 + 2 · 32t−2 (mod 3t+1)

≡ 1 + 3t−1 + 3t + 2 · 3tk4 (mod 3t+1).

We thus get that

T2·3ts−1 = T(2·3t−1s)+(2(2·3t−1s)−1)

= T2·3t−1s−1Tc + (T2·3t−1s − 2T2·3t−1s−1)Tb + T2·3t−1s−2Ta

≡ 2 · 3t−1 + 3tk2 + 2 · 32t−2 + 3t−1 + 32t−2 + 3t + 2 · 3tk2 (mod 3t+1)

≡ 2 · 3t (mod 3t+1),
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and

T2·3ts = T(2·3t−1s+1)+(2(2·3t−1s)−1)

= T2·3t−1sTc + (T2·3t−1s−1 + T2·3t−1s−2)Tb + T2·3t−1s−1Ta

≡ 3t−1 + 3tk1 + 32t−2 + 2 · 3t−1 + 2 · 3tk1 + 2 · 32t−2 (mod 3t+1)

≡ 3t (mod 3t+1).

A similar argument (which we leave to the reader) shows that

T2·3ts+1 ≡ 1 + 2 · 3t (mod 3t+1).

We now assume that s ≡ 2 (mod 3). Then s = 3k + 2 = (3k + 1) + 1 for some k ∈ Z.
In this case, with m = 2 · 3t(3k + 1) and using the previously proved result for the case
s ≡ 1 (mod 3), we obtain

T2·3ts−1 = T(2·3t)+(2·3t(3k+1)−1)

= T2·3t−1Tm+1 + (T2·3t − 2T2·3t−1)Tm + T2·3t−2Tm−1

≡ (2 · 3t)(1 + 2 · 3t) + (3t − 2(2 · 3t))3t + (1 + 3t)(2 · 3t) (mod 3t+1)

≡ 3t (mod 3t+1),

and

T2·3ts = T(2·3t+1)+(2·3t(3k+1)−1)

= T2·3tTm+1 + (T2·3t+1 − 2T2·3t)Tm + T2·3t−1Tm−1

≡ 3t(1 + 2 · 3t) + (1 + 2 · 3t − 2 · 3t)3t + (2 · 3t)(2 · 3t) (mod 3t+1)

≡ 2 · 3t (mod 3t+1),

as desired. Similarly, we can prove that

T2·3ts+1 ≡ 1 + 3t (mod 3t+1).

Proof of Theorem 5.4

Suppose first that n ≡ a (mod 6) with a ∈ {−1, 0}. Then n can be written as n =
2 · 3ts+ a for s, t ≥ 1 with s 6≡ 0 (mod 3). Thus, Lemma 5.5 yields ν3(T2·3ts+a) = t, and
then

ν3(Tn) = ν3(T2·3ts+a) = t = ν3(2 · 3ts) = ν3(n− a). (5.10)

Suppose now that n ≡ a (mod 6) with a ∈ {1, 2, 3, 4}. In this case, by using the fact that
(Tn mod 3)n≥0 is periodic with period 6, we deduce that Tn ≡ Ta (mod 3). However,
one can easily check that Ta ≡ 1 or 2 (mod 3) for all a ∈ {1, 2, 3, 4}, and so ν3(Tn) = 0.
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5.5 Proof of Theorem 5.5

In this last section we apply the 3-adic order of the Tripell sequence to completely solve
the Diophantine equation (5.5). Indeed, assume first that equation (5.5) holds. If m ≤ 5,
then the only solutions of (5.5) are those shown in Theorem 5.5, so we may assume that
m ≥ 6. Hence the following inequality holds

m! <
(m

2

)m
. (5.11)

On the other hand, by Theorem 5.4 we get that

ν3(Tn) = ν3(m!) ≤ ν3(n) + ν3(n+ 1).

From this and Lemma 5.1, for p = 3, we get

m

2
−
⌊

logm

log 3

⌋
− 1 ≤ ν3(m!) ≤ 2 max{ν3(n), ν3(n+ 1)} ≤ 2ν3(n+ δ),

where δ = 0, 1. It then follows that

3
m
4
− logm

2 log 3
− 1

2 ≤ 3ν3(n+δ) ≤ n+ δ ≤ n+ 1,

leading to
m

4
− logm

2 log 3
− 1

2
≤ log(n+ 1)

log 3
· (5.12)

Additionally, by Lemma 5.2 and (5.11) we have

2.54n−2 < Tn = m! < (m/2)m,

and hence n < 2 + 1.1m log(m/2). Inserting this upper bound on n into (5.12), we
conclude that

m

4
− logm

2 log 3
− 1

2
<

log(3 + 1.1m log(m/2))

log 3
· (5.13)

This last inequality (5.13) implies that m < 25 and therefore, n < 75. Finally, a
computational search with software Mathematica revealed that the only solutions to
equation (5.5) are those mentioned in Theorem 5.5. Thus, Theorem 5.5 is proved.



Chapter 6
On a variant of the Brocard–Ramanujan
equation and an application

In this chapter, we study the variant of the Brocard–Ramanujan Diophantine equation
m! + 1 = u2, where u is a member of a sequence of positive integers. Under some
technical conditions on the sequence, we prove that this equation has at most finitely
many solutions in positive integers m and u. As an application, we completely solve this
equation when u is a Tripell number. The Tripell numbers are defined by the recurrence
relation Tn = 2Tn−1 + Tn−2 + Tn−3 for n ≥ 3, with T0 = 0, T1 = 1 and T2 = 2 as initial
conditions.

6.1 Introduction

Brocard (see [24, 25]), and independently Ramanujan (see [67, 68]), posed the problem
of finding all positive integer solutions to the Diophantine equation

m! + 1 = n2. (6.1)

This is known as the Brocard–Ramanujan Diophantine equation, and it is still an open
problem (see [40]). It is expected that the only solutions are (m,n) = (4, 5), (5, 11), (7, 71).
Computations by Berndt and Galway [8] showed that there are no other solution in the
range m < 109. In 1993, Overholt [62] proved that the weak form of Szpiro’s conjecture
implies that equation (6.1) has only finitely many solutions. The weak form of Szpiro’s
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conjecture is a special case of the ABC conjecture and asserts that there exists a constant
s such that if A,B, and C are positive integers satisfying A+B = C with gcd(A,B) = 1,
then C ≤ N(ABC)s, where N(k) is the product of all primes dividing k taken without
repetition.

Some variations of equation (6.1) have been considered by various authors and we
refer the reader to [29, 30, 31, 55] and references therein for additional information and
history. For example, Dabrowski [29] studied the Diophantine equation

m! + A = n2, (6.2)

where A is a fixed non-zero integer. He proved that if A is not a square, then equation
(6.2) has only finitely many integral solutions. He also proved that if A is a square,
then the weak form of Szpiro’s conjecture implies the finiteness of solutions for equation
(6.2). On the other hand, Luca [55] proved that the ABC-conjecture implies that the
Diophantine equation

P (x) = n!

has finitely many solutions for any P (x) ∈ Z[x] of degree > 1.

Variants of (6.1) involving linear recurrences have been also studied. For example,
Marques [57] investigated the Fibonacci version of the Brocard-Ramanujan Diophantine
equation, namely the equation

FmFm+1 · · ·Fm+k−1 + 1 = F 2
n .

Szalay [75] and Pongsriiam [66] worked on another version of the Brocard-Ramanujan
problem with Fibonacci, Lucas and balancing numbers, extending the result of Marques
[57]. Taşci and Sevgi [76] studied Pell and Pell-Lucas numbers associated with the
Brocard-Ramanujan equation, while Pink and Szikszai [65] investigated the Brocard–
Ramanujan problem with Lucas and associated Lucas sequences.

In this chapter, we consider the equation

m! + 1 = u2n, (6.3)

in non-negative integers m and n, where {un}n≥0 is a sequence of positive integers, which
can be seen as a variation of the Brocard-Ramanujan equation. We prove the following
theorem in which we specify certain conditions that ensure a finite number of solutions
of equation (6.1), and in the proof we can extract an upper bound on the solutions.

In what follows, we use the Landau symbol O with its usual meaning. For two
sequences {an}n≥0 and {bn}n≥0 we denote an = O(bn) if there exists a positive constant
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K such that |an| ≤ K|bn| for all sufficiently large n. In addition, for a given prime
number p, the p-adic valuation, or p-adic order, of a non-zero integer n, denoted by
νp(n), is the exponent of the highest power of p which divides n.

Theorem 6.1. Let {un}n≥0 be a sequence of positive integers such that

n = O(log un). (6.4)

Let p be a prime and assume that

νp(un + 1) = O(nC1) and νp(un − 1) = O(nC2) (6.5)

for some constants C1 and C2 with max{C1, C2} < 1. Then, the Diophantine equation
(6.3) has only a finite number of solutions in non-negative integers m and n.

Remark 6.1. Let a ∈ {±2} and consider the sequence {un}n≥0 given by u0 = 0, u1 = 1
and the binary linear recurrence un = aun−1 − un−2 for all n ≥ 2. Here, we can easily
see that {un}n≥0 is either equal to {n}n≥0 or to {(−1)n−1n}n≥0, and so in any case we
have that n = O(un). These examples illustrate situations in which the condition (6.4) of
Theorem 6.1 does not hold, although it is usually satisfied for linear recurrence sequences.
Examples include sequences having exponential growth. In these latter cases we only need
to check whether (6.5) holds for some prime p.

As mentioned earlier, variants of the Brocard-Ramanujan equation involving bi-
nary recurrence sequences have been studied. However, much less is known about the
Brocard–Ramanujan problem with linear recurrence sequences of higher order. A par-
ticular case of linear recurrence sequences of order 3 was studied by Facó and Marques
in [38]. They considered the Brocard–Ramanujan equation

m! + 1 = t2n,

where tn is the nth Tribonacci number. The Tribonacci numbers are defined by the
recurrence tn = tn−1 + tn−2 + tn−3 for all n ≥ 3, with t0 = 0 and t1 = t2 = 1 as initial
conditions.

Inspired by these results, we also study an analogue of the problem of Facó and
Marques treated in [38] with Tribonacci numbers replaced by Tripell numbers. The
Tripell sequence {Tn}n≥0 is one of the generalizations of the Pell sequence. This starts
with T0 = 0, T1 = 1, T2 = 2 and each term afterwards is given by the recurrence

Tn = 2Tn−1 + Tn−2 + Tn−3. (6.6)
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Below we present the first few elements of the Tripell sequence:

0, 1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, . . . (6.7)

The Tripell numbers and its generalizations have been studied by some authors (see
[19, 47, 48, 49]). For example, in [48], Kiliç gave some relations involving Fibonacci and
generalized Pell numbers showing that generalized Pell numbers can be expressed as the
summation of the Fibonacci numbers. We have the following theorem.

Theorem 6.2. The only solution of the Diophantine equation

m! + 1 = T 2
n , (6.8)

in non-negative integers m and n, is (m,n) = (4, 3).

The reasoning in Theorem 6.1 provides upper bounds on the solutions of the equation
(6.8) if we are able to find some parameters that will be seen in the proof of Theorem
6.1. By determining the 3-adic valuation of the terms Tn ± 1, we will show that it is
indeed the case for our sequence {Tn}n≥0.

6.2 Auxiliary results

In this section, we present some auxiliary results that are needed in the proofs of the
main theorems. To begin with, we give an auxiliary lemma,

Lemma 6.1. For any integer m ≥ 1 and prime p, we have

m

p− 1
−
⌊

logm

log p

⌋
− 1 ≤ νp(m!) ≤ m− 1

p− 1
, (6.9)

where bxc denotes the largest integer less than or equal to x.

We next mention some facts about the Tripell sequence which will be used later.
First, it is known that its characteristic polynomial f(x) = x3−2x2−x−1 is irreducible
in Q[x]. In addition, f(x) has a real root ζ > 1 and two conjugate complex roots inside
the unit circle. In fact,

ζ =
1

3

2 +
3

√
61

2
− 9
√

29

2
+

3

√
61

2
+

9
√

29

2

 = 2.54682 . . . . (6.10)

The following inequality, which shows the exponential growth of {Tn}∞n=0,
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Lemma 6.2. For all n ≥ 1, we have

ζn−2 ≤ Tn ≤ ζn−1. (6.11)

This result plays a crucial role in the proof of Theorem 6.2.

Lemma 6.3. For all m,n, with m ≥ 3 and n ≥ 0, we have that

Tm+n = Tm−1Tn+2 + (Tm−2 + Tm−3)Tn+1 + Tm−2Tn

= Tm−1Tn+2 + (Tm − 2Tm−1)Tn+1 + Tm−2Tn.

We finish this section of auxiliary results by giving two congruence lemmas.

Lemma 6.4. For all s, t ≥ 1, s 6≡ 0 (mod 3), we have

T2·3ts−1 ≡

{
2 · 3t (mod 3t+1), if s ≡ 1 (mod 3);

3t (mod 3t+1), if s ≡ 2 (mod 3);

T2·3ts ≡

{
3t (mod 3t+1), if s ≡ 1 (mod 3);

2 · 3t (mod 3t+1), if s ≡ 2 (mod 3);

and

T2·3ts+1 ≡

{
1 + 2 · 3t (mod 3t+1), if s ≡ 1 (mod 3);

1 + 3t (mod 3t+1), if s ≡ 2 (mod 3).

As an immediate consequence of the above lemma we have the following congruence.
This will be needed for dealing some particular case mentioned in the last part of Lemma
6.6.

Lemma 6.5. For all s, t ≥ 1, s 6≡ 0 (mod 3), we have

T2·3ts−4 ≡

{
−1 + 3t (mod 3t+1), if s ≡ 1 (mod 3);

−1 + 2 · 3t (mod 3t+1), if s ≡ 2 (mod 3).

Proof. This result is a direct consequence of the recursive formula

Tn−4 = −Tn+1 + Tn + 4Tn−1 for n ≥ 4,

which can be obtained by using the recurrence relation for (Tn)∞n=0, and Lemma 6.4.
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6.3 Proof of Theorem 6.1

Suppose that (m,n) is an integer solution of equation (6.3) and the assumptions (6.4)
and (6.5) are satisfied for some prime number p. First of all, it is clear that there exists
a positive integer m0 such that the inequality

blogpmc+ 1 ≤ m

p(p− 1)
=

m

p− 1
− m

p
, (6.12)

holds for all m ≥ m0. From this and Lemma 6.1, we get that

m

p
≤ m

p− 1
− blogpmc − 1 ≤ νp(m!) (6.13)

for all m ≥ m0. On the other hand, by the assumption (6.5), there exist some positive
constants K1, K2 and an integer n1 ≥ 0 such that

m

p
≤ νp(m!) = νp(u

2
n − 1) = νp(un + 1) + νp(un − 1)

≤ K1n
C1 +K2n

C2

≤ 2KnC ,

for all n ≥ n1, where K = max{K1, K2} and C = max{C1, C2}. Thus,

n ≥
(

m

2Kp

)1/C

(6.14)

for all n ≥ n1 and m ≥ m0. By the assumption (6.4), the inequality n ≤ K3 log un holds
for all n ≥ n2, for some positive constant K3 and some integer n2 ≥ 0. Note that there is
only a finite number of solutions of equation (6.3) with m ≤ 5. If m ≥ 6, the inequality
m! + 1 < (m/2)m holds by Stirling’s formula, and hence u2n = m! + 1 < (m/2)m for all
m ≥ 6. Therefore,

2n

K3

≤ 2 log un < m log(m/2) (6.15)

for all n ≥ n2 and m ≥ 6. Combining (6.14) and (6.15) we obtain that

log(m/2) >
2n

K3m
≥ K̂m1/C−1 (6.16)

for all n ≥ max{n1, n2} and m ≥ max{m0, 6}, where K̂ = 2/(K3(2Kp)
1/C). But C < 1

implies that 1/C − 1 > 0, and so (6.16) holds only for finitely many m. Thus, by
inequality (6.15) we obtain an upper bound for n. Finally, we observe that if n <
max{n1, n2} or m < max{m0, 6}, then (6.3) and (6.4) imply that n and m have finitely
many possibilities. Consequently, equation (6.3) has only a finite number of solutions.
Theorem 6.1 is therefore proved.
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6.4 Proof of Theorem 6.2

We first present the following key result in which we give simple formulas for the 3-adic
valuations ν3(Tn ± 1), and will play an important role in the proof of Theorem 6.2.

Lemma 6.6. For each positive integer n, we have

ν3(Tn − 1) =


0, if n ≡ 0, 2, 3, 5 (mod 6);

ν3(n− 1), if n ≡ 1 (mod 6);

ν3(n+ 2), if n ≡ 4 (mod 6);

(6.17)

and

ν3(Tn + 1) =


0, if n ≡ 0, 1, 4, 5 (mod 6);

ν3(n+ 4), if n ≡ 2 (mod 6);

ν3(n+ 3), if n ≡ 3 (mod 6).

(6.18)

Proof of Lemma 6.6

(a) Let n ≡ a (mod 6) with a ∈ {0,−1}. Then n = 2 · 3ts + a for some t ≥ 1 and
s 6≡ 0 (mod 3). Here, it follows directly from Lemma 6.4 that ν3(Tn ± 1) = 0.

(b) If n ≡ 1 (mod 6), then n = 2 · 3ts + 1 for some t ≥ 1 and s 6≡ 0 (mod 3). By
Lemma 6.4 we get that ν3(Tn − 1) = t = ν3(n− 1) and ν3(Tn + 1) = 0.

(c) Suppose now that n ≡ 3 ≡ −3 (mod 6). Then n = 2 · 3ts− 3 for some t ≥ 1 and
s 6≡ 0 (mod 3). It is a simple matter to show, by using the recurrence relation
(6.6), that Tn = 3Tn+3 − Tn+2 − Tn+4. From this and Lemma 6.4, we have

Tn ≡

{
−1− 3t (mod 3t+1), if s ≡ 1 (mod 3);

−1− 2 · 3t (mod 3t+1), if s ≡ 2 (mod 3).

Thus, ν3(Tn − 1) = 0 and ν3(Tn + 1) = t = ν3(n+ 3).

(d) If n ≡ 4 ≡ −2 (mod 6), then n = 2 ·3ts−2 for some t ≥ 1 and s 6≡ 0 (mod 3). We
now use the recursive formula Tn = Tn+3− 2Tn+2−Tn+1 and Lemma 6.4 to obtain

Tn ≡

{
1− 2 · 3t (mod 3t+1), if s ≡ 1 (mod 3);

1− 3t (mod 3t+1), if s ≡ 2 (mod 3).

Thus, ν3(Tn − 1) = t = ν3(n+ 2) and ν3(Tn + 1) = 0, as we wanted.
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(e) If n ≡ 2 (mod 6), then n = 2 · 3ts+ 2 for some t ≥ 1 and s 6≡ 0 (mod 3). Here, by
using the recurrence (6.6) and Lemma 6.4 once again, we obtain that

Tn ≡

{
2 + 3t (mod 3t+1), if s ≡ 1 (mod 3);

2 + 2 · 3t (mod 3t+1), if s ≡ 2 (mod 3).

Thus, ν3(Tn−1) = 0. We also deduce that ν3(Tn + 1) = 1 = ν3(n+ 4) except when
t = 1 and s ≡ 2 (mod 3). We finally deal with the special case when n = 6s + 2
with s ≡ 2 (mod 3). Note that, in this special case for n, we can write n = 2·3rk−4
for some r ≥ 2 and k 6≡ 0 (mod 3). We thus obtain that ν3(Tn+1) = r = ν3(n+4)
by applying Lemma 6.5.

6.5 Proof of Theorem 6.2

First of all, by the left-hand side of the inequality of Lemma 6.2 we have that

n log ζ ≤ 2 log ζ + log Tn ≤ 1.5 log Tn for all n ≥ 6,

leading to

n ≤ 1.5

log ζ
log Tn < 2 log Tn for all n ≥ 6.

Thus, n = O(log Tn). On the other hand, for a ∈ {−1, 2, 3, 4}, we get

n+ a = 3ν3(n+a)x

for some integer x ≥ 1, and therefore,

ν3(n+ a) = log3(n+ a)− log3 x ≤ log3(n+ 4) < 1.5n1/3

for all n ≥ 1. From the above and Lemma 6.6 we conclude that the inequalities

ν3(Tn − 1) ≤ ν3(n− 1) + ν3(n+ 2) < 3n1/3

and
ν3(Tn + 1) ≤ ν3(n+ 3) + ν3(n+ 4) < 3n1/3

hold for all n ≥ 1. Thus, ν3(Tn − 1) = O(n1/3) and ν3(Tn + 1) = O(n1/3), and so the
assumptions (6.4) and (6.5) of Theorem 6.1 are fulfilled. In the proof of Theorem 6.1 we
can take the parameters (p,m0, K,K3, C) = (3, 18, 3, 2, 1/3) and so

K̂ = 2/(K3(2Kp)
1/C) = 0.000171468 · · · .
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By using this, from (6.16) we obtain the inequality

m2 < 5850 log(m/2)

implying that m ≤ 160. Hence, by (6.15), n ≤ 710. Finally, a computational search
revealed that the only solution to equation (6.8) is (m,n) = (4, 3). Thus, Theorem 6.2
is proved.
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