Programa de Matemáticas
Estructura curricular
La estructura curricular del Programa de Matemáticas se fundamenta en los objetivos propuestos para el mismo, en la capacidad cualitativa y cuantitativa del Departamento de Matemáticas, en los planes de desarrollo de la Universidad y de dicho Departamento, y en los principios de:
Universalidad: En él se identifican las matemáticas como una ciencia universal, teniendo en cuenta que están presentes en todas las actividades y manifestaciones de diversas culturas y con objetos independientes del tiempo y del espacio.
Multidimensionalidad: En él se reconocen las diversas dimensiones del ser humano relacionadas con su curiosidad intelectual y su sensibilidad estética, como también sus valores éticos, sociales, culturales e individuales; teniendo en cuenta que tanto estos, como las dimensiones antes mencionadas, van más allá de cualquier disciplina y por tanto requieren de espacios universitarios para ser cultivados y fortalecidos.
No uniformidad: En él se reconoce que los seres humanos nos aceptamos como distintos y, en consecuencia, tenemos intereses y expectativas que necesariamente conllevan a la elección de diferentes alternativas de formación; lo cual no impide que asumamos el compromiso de trabajar de manera colectiva, respetando la divergencia de opiniones y propendiendo por alcanzar un beneficio común.
Ejercicio real de la libertad y la autonomía: En él se reconoce que la universidad debe brindar al estudiante la posibilidad de estructurar, de manera responsable y dentro de un marco coherente pero flexible, su plan de estudios, teniendo en cuenta los intereses y la diversificación al interior de su proceso de formación.
Interdisciplinariedad: En él la Universidad identifica el carácter complejo y articulado de las disciplinas que han de constituir el acerbo teórico y conceptual del educador profesional, propendiendo por vivenciar la articulación de los saberes involucrados en su formación.
Igualmente, esta estructura curricular tiene en cuenta los conceptos que se enunciarán a continuación:
Fases de Formación Disciplinar: Hacen referencia a cada una de las etapas dentro de las cuales se realiza el proceso formativo en el programa. Estas son: la fase de fundamentación, de profesionalización y de formación investigativa.
La fase de fundamentación comprende principalmente los cursos que van desde el nivel cero hasta el nivel dos y brinda al estudiante la posibilidad de:
• Apropiarse de los conceptos básicos de las matemáticas.
• Estudiar algunas de las disciplinas que se cultivan en la Universidad.
• Desarrollar y fortalecer competencias comunicativas y lecto-escritoras.
• Practicar un deporte formativo de su escogencia.
• Estudiar un idioma extranjero.
La fase de profesionalización, comprende básicamente los cursos que van desde el nivel tres hasta el nivel cuatro y brinda al estudiante la posibilidad de:
• Apropiarse de conceptos matemáticos de mayor profundidad conceptual.
• Complementar su formación mediante la escogencia de cursos electivos, del menú ofrecido por el Departamento de Matemáticas.
• Complementar su formación profesional mediante el estudio de alguna disciplina de las Ciencias Naturales.
La fase de formación investigativa, comprende los cursos superiores al cuarto de nivel y brinda al estudiante la posibilidad de:
• Complementar su formación matemática mediante la selección de por lo menos dos cursos de nivel avanzado (mayor o igual que 5).
• Apropiarse de los conceptos básicos sobre investigación e iniciarse en la misma.
• Participar en grupos de desarrollo investigativo.
Niveles de Formación: En el desarrollo de cada disciplina, en particular de cada área de las matemáticas (básicas y complementarias), existen diversos niveles de formación que se distinguen por los grados de dificultad, rigurosidad y profundidad conceptual que se presentan en la apropiación del conocimiento. La determinación de estos niveles se basa en aspectos cuantitativos y cualitativos de los conocimientos que el individuo ha adquirido, en su madurez tanto psicológica como intelectual y en el desarrollo de la abstracción, de la creatividad y de la crítica científica; necesarios para el aprendizaje y comprensión de los temas que se quieren abordar. A partir de lo anterior, y mediante un proceso deductivo/inductivo, se procura avanzar en la formación disciplinar, partiendo de lo general a lo particular, para llegar a un nivel de profundización conceptual superior.
Áreas de la Matemática: Teniendo en cuenta las líneas generales de desarrollo planteadas por el Departamento, las cuales son determinadas por los grupos de estudio, y el nivel investigativo del mismo, se han establecido diez áreas disciplinares: tres básicas y siete complementarias, distribuidas así:
• Áreas Básicas: Análisis, Álgebra, y Geometría y Topología.
• Complementarias: Probabilidad y Estadística, Ecuaciones Diferenciales y Física Matemática, Fundamentación Matemática, Matemática Computacional, Optimización e Investigación de Operaciones, Educación Matemática, Filosofía e Historia de las Matemáticas.
Componentes de Formación: Hacen referencia a los diferentes campos del conocimiento que deben desarrollarse en la formación de un profesional o en un programa académico específico, cualquiera sea su ciclo. El Programa de Matemáticas, visto desde un plano curricular, se concibe a partir de tres componentes de formación, así: Formación Propia Profesional (F.P.P), Formación Complementaria Profesional (F.C.P) y Formación Complementaria General (F.C.G).
Componente de Formación Propia Profesional (F.P.P): Contiene las actividades curriculares propias para la formación matemática según el Decreto 2576.
Componente de Formación Complementaria Profesional (F.C.P): Contiene las actividades curriculares que se consideran complementarias a la formación del profesional matemático y las cuales no necesariamente se encuentran dentro de esta disciplina. De ella hacen parte las áreas que se enunciarán a continuación:
• Área de Interés Personal (A.I.P): Comprende los intereses personales desarrollados por el estudiante, bien sea en relación con su disciplina o con un saber diferente a la misma. Para dar cumplimiento a esta área el estudiante debe tener en cuenta las siguientes condiciones:
a. Los cursos son de libre escogencia y podrán desarrollarse en cualquiera de los programas académicos que ofrece la Universidad.
b. La posibilidad de elección de un curso está sometida a la disponibilidad de cupos y el cumplimiento de requisitos.
• Área de Humanidades: Comprende los saberes y prácticas que complementan la formación integral del Matemático en valores éticos, artísticos, pedagógicos, antropológicos y sociales. Para dar cumplimiento a esta área el estudiante debe tener en cuenta las siguientes condiciones:
a. Cada curso es de libre escogencia dentro de las áreas de Ciencias Humanas y Sociales, Pedagogía y/o Artes.
b. La posibilidad de elección de cada curso está sometida a la disponibilidad de cupos y el cumplimiento de requisitos.
c. Cada curso tendrá que ser autorizado por el Coordinador del Programa de Matemáticas.
• Área Electiva: Comprende el desarrollo, por parte del estudiante, de actividades académicas que lo conduzcan a la adquisición de un saber específico dentro de la disciplina de las Matemáticas o de una ciencia natural: Física, Química o Biología. Para dar cumplimiento a esta área el estudiante debe tener en cuenta las siguientes condiciones:
a. Los cursos no deben pertenecer al nivel básico del Programa de Matemáticas, por ende, tendrán que ser de 3er. nivel o superior a este y pertenecer a una misma Ciencia Natural.
b. Todos los cursos deben corresponder a una misma área electiva ofrecida por el Departamento de Matemáticas.
• Área de Ciencias Naturales: Comprende la aprobación, por parte del estudiante, de al menos dos cursos -con sus respectivos laboratorios- en una misma ciencia natural (Biología, Física o Química).
• Área de Cursos Avanzados: Comprende la escogencia y respectiva aprobación, por parte del estudiante, de un curso de nivel 5 ó superior en la áreas básicas del Departamento de Matemáticas (Análisis, Álgebra, Geometría y Topología).
Componente de Formación Complementaria General (F.C.G): Contiene las actividades curriculares que se consideran requisitos generales de la Universidad del Cauca y de la Facultad de Ciencias Naturales, Exactas y de la Educación.